

GR 1617
Capacitance Bridge

1617-0100-E

WARNING

Use of this bridge can involve exposure to potentially dangerous high voltages. For operator safety, no measurements should be attempted until the operator has read, and understands, operating procedures outlined in this manual, pages 1 through 18.

GR 1617

Capacitance Bridge

©GenRad 1976
Concord, Massachusetts, U.S.A. 01742
Form 1617-0100-E
August 1978
ID-2528

Quantity	Frequency	Range	Accuracy
Capacitance	120 Hz internal *	0 to 0.11 F	$\pm 1 \% \pm 1 \mathrm{pF}$, smallest division 2 pF ; residual ("zero") capacitance approximately 4 pF
		0.11 F to 1.1 F	$\pm 2 \%$
	40 Hz to 120 Hz external (useful down to 20 Hz with reduced accuracy)	0 to 1.1 F	Same as above with suitable generator
	120 Hz to 1000 Hz external	0 to $1 \mathrm{~F}\left(\frac{100}{f_{H z}}\right)^{2}$	$\pm 1 \% \pm 1 \mathrm{pF}$ with suitable generator and precautions
Dissipation Factor	120 Hz internal or 40 Hz to 120 Hz	0 to $10 \frac{\mathrm{fHz}^{*}}{120}$	$\pm 0.001 \pm 0.01 \mathrm{C}($ in F) $\pm 2 \%$
	120 Hz to 1 kHz	0 to 10	$\left(\pm 0.001 \pm 0.01 \mathrm{C}(\right.$ in F) $) \frac{f_{H_{z}}}{120}$

Lead-Resistance Error (4-ferminal connection): Additional capacitance error of less than 1% and D error of 0.01 for a resistance of 1Ω in each lead on all but the highest range, or 0.1Ω on the highest range.

Internal Test Signal: 120 Hz (synchronized to line) for $60-\mathrm{Hz}$ model ; 100 Hz for $50-\mathrm{Hz}$ model. Selectable amplitude less than 0.2 V , 0.5 V , or 2 V . Phase reversible.

External Test Signal: 20 Hz to 1 kHz with limited range (see above). Internal DC Bias Voltage and Voltmeter: 0 to 600 V in 6 ranges.
Voltmeter Accuracy: $\pm 3 \%$ of full scale.
Internal DC Bias Current: Approximately 15 mA maximum.
Ammeter Range: 0 to 20 mA in 6 ranges. Can detect $1 / 2-\mu \mathrm{A}$ leakage.
Ammeter Accuracy: $\pm 3 \%$ of full scale.
External Bias: 800 V maximum.

Power Required: 105 V to 125 V or 210 V to $250 \mathrm{~V}, 60 \mathrm{~Hz}, 18 \mathrm{~W}$ maximum. Models available for $50-\mathrm{Hz}$ operation.
Accessories Supplied: Four-lead and shielded two-lead cable assemblies.
Accessories Required: None for $120-\mathrm{Hz}$ measurements. The Type 1311 Oscillator is recommended for measurement at spot frequencies, the Type 1310 Oscillator for continuous frequency coverage.
Mechanical Data: Flip-Tilt Case.

Model	Width		Height			Depth		Net Wt		Ship Wt	
	in	mm	in	mm	in	mm	lb	kg	lb	kg	
	$161 / 4$	415	15	385	9	230	26	12	$34 \dagger$	15.5	
Rack	19	485	14	355	$61_{8}^{* *}$	160	28	13	$43 \dagger$	20	

* 120 Hz is the frequency of the internal signal for the $60-\mathrm{Hz}$ model; it becomes 100 Hz in the $50-\mathrm{Hz}$ model.
**Behind panel. \dagger Estimated.

Summary of EIA and MIL Specifications on Testing Electrolytic Capacitors

$\begin{gathered} \text { Specification } \\ \text { and } \\ \text { Capacitor Type } \end{gathered}$	Frequency	AC Lerel		uracy Loss	DC Polarizing Voltage
MIL C-3965 C Tantalum Foil and Sinfered Slug Capacitors	$120 \pm 5 \mathrm{~Hz}$	Less than 30\% of DCWV or 1 V , whichever is smaller	2\%	$\begin{gathered} R \text { or P.F. } \\ 2 \% \end{gathered}$	C-Sufficient for no reversal of polarity. D-"Polarized Capacitance Bridge" Sum of ac and dc shall not exceed DCWV.
MIL C-26655-B Solid Tantalum Capacitors	$120 \pm 5 \mathrm{~Hz}$	$\begin{aligned} & \text { Limited to IV, } \\ & \text { rms } \end{aligned}$	2\%	D, 10\%	C-Max bias 2.2 V . D-"Polarized Bridge", 2.2-V dc max.
$\text { RS } 228$ Tantalum Electrolytic Capacitors	120 Hz	Small enough not to change value	$\pm 21 / 2 \%$	D, 5%	Optional
MIL C-62 B Polarized Aluminum Capacitors	$120 \pm 5 \mathrm{~Hz}$	Limited to 30% of DCWV or 4 V , whichever is smaller	2\%	D, 2\%	No bias required if ac voltage less than 1 V . However, if bias causes differences, measurements with bias shall govern.
RS 154 B Dry Aluminum Electrolytic Capacitors	120 Hz	Small enough not to change value	$\pm 21 / 2 \%$	R or RC	Optional; but if substantial difference occurs, rated dc should be used.
RS 205 Electrolytic Capacitors for use in Electronic Instruments	120 Hz	Small enough not to change value	$\pm 21 / 2 \%$	D	Optional

[^0]
tABLE OF CONTENTS

Section 1 INTRODUCTION 1
1.1 Purpose 1
1.2 Description 1
1.3 Accessories Supplied 1
1.4 Controls, Connectors, and Indicators (Figure 1-2) 2
1.5 Symbols, Abbreviations, and Definitions 4
1.6 Operator Safety 4
Section 2 INSTALLATION 5
2.1 General 5
2.2 Mounting 5
2.3 Power Connection 7
Section 3 OPERATING PROCEDURE 9
3.1 Connection of the Unknown Capacitor 9
3.2 Capacitance Measurement Procedure - Internal Generator 10
3.3 Leakage Current Measurement 11
3.4 Voltage Measurement Accuracy 12
3.5 Maximum Discharge Energy 12
Section 4 SPECIAL MEASUREMENTS 13
4.1 Use of an External Generator 13
4.2 Use of an External Microammeter 14
4.3 Use of an External Bias Supply 14
4.4 Use of the Normal/Reverse Positions 15
4.5 Other Applications 15
Section 5 PRINCIPLES OF OPERATION 19
5.1 Bridge Circuits 19
5.2 Guard Circuit 21
5.3 The Internal Generator 21
5.4 Internal Detector 22
5.5 The Bias Voltage Supply 22
5.6 Orthonull 22
5.7 Three-and-Four-Terminal Measurements 23
5.8 General 25
Section 6 SERVICE AND MAINTENANCE 27
6.1 Warranty 27
6.2 Service 27
6.3 Trouble Analysis 27
6.4 Detail Trouble Analysis (Figure 6-1) 28
6.5 Calibration Procedure 31
6.6 Flip-Tilt Cabinet 33
6.7 Repair and Replacement 33
6.8 Minimum Performance Standards 33
6.9 Knob Removal 36
6.10 Knob Installation 36
6.11 Meter Window Care 36

除 GenRad

WARRANTY

We warrant that this product is free from defects in material and workmanship and, when properly used, will perform in accordance with GenRad's applicable published specifications. If within one(1) year after original shipment it is found not to meet this standard, it will be repaired or at the option of GenRad, replaced at no charge when returned to a GenRad service facility.

CHANGES IN THE PRODUCT NOT APPROVED BY GENRAD SHALL VOID THIS WARRANTY.
GENRAD SHALL NOT BE LIABLE FOR ANYINDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES, EVEN IF NOTICE HAS BEEN GIVEN OF THE POSSIBILITY OF SUCH DAMAGES.
THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

SERVICE POLICY

Your local GenRad office or representative will assist you in all matters relating to product maintenance, such as calibration, repair, replacement parts and service contracts.

GenRad policy is to maintain product repair capability for a period of five (5) years after original shipment and to make this capability available at the then prevailing schedule of charges.

Introduction-Section 1

WARNING

To minimize electrical shock hazard, it is recommended that bias voltages be limited to 30 volts maximum. For certain applications, under proper conditions, up to 800 volts can be used.

When bias voltages greater than 30 volts are used exercise extreme care. Full bias voltage appears on panel binding posts, test leads, test fixtures and on the leads of the capacitor under test.

As the first step in the operating procedure, check that the CAPACITOR CHARGED and DANGER - BIAS ON warning lights glow as the capacitor under test becomes charged. If either warning light does not glow, turn off the bias source and bridge power immediately, and refer the bridge to properly qualified personnel for correction of the malfunction.

Capacitors remain charged after measurement. The user must follow safe procedures to assure proper discharge of capacitors after measurement.

For their safety, all personnel operating this bridge must be made aware of the potential shock hazard involved in measuring biased capacitors.

Do not leave the bridge unattended with bias applied.

1.1 PURPOSE.

The Type 1617 Capacitance Bridge, an entirely self-contained system, measures capacitance and dissipation factor of practically any capacitor, and is particulary designed to test tantalum or aluminum electrolytic capacitors at 120 Hz per MIL and EIA specification (refer to specifications).

It measures dc leakage current with a resolution of about $1 \mu \mathrm{~A}$ and in general is a good 1% capacitance bridge. It permits two-, three-, four- and even fiveterminal measurements of capacitance and dielectric loss of insulating materials, cables, and transformers, even if remotely located.

1.2 DESCRIPTION.

The Type 1617 Capacitance Bridge is a modified form of the standard series-RC bridge. It operates from conventional $60-\mathrm{Hz}$ power lines $(50-\mathrm{Hz}$ versions available), and is completely self-contained, including a $120-\mathrm{Hz}$ generator, a selective detector, and a dc bias. Provisions have also been made for use of an external ac generator and dc bias supply. Accuracy is 1% between 40 Hz and 1 kHz over most of the capacitance range.

To achieve the 1% accuracy over this wide capacitance range, 3-and 4-terminal connections as well as

2-terminal connections are provided. On high-capacitance ranges, where impedance is so low that leads have a significant effect on the D reading, a 4 -terminal connection can be used. On low-capacitance ranges, where stray capacitance may cause a significant error in C measurement, a 3-terminal connection may be used.

Because the internally generated polarizing voltage can be as high as 600 volts, two panel lights are provided as safety features, one to indicate that the biasing switch is thrown, the other to indicate that the charge on the unknown capacitor exceeds 1 volt.

1.3 ACCESSORIES SUPPLIED.

Table 1-1 lists the accessories supplied with the Type 1617 bridge.

Table 1-1

Accessories Supplied		
Quantity	Description	Part Number

1.4 CONTROLS, CONNECTORS, AND INDICATORS

Table 1-2 lists and describes front-panel controls, connectors and indicators on the Type 1617 bridge.

Figure 1-1. Controls, connectors and indicators.

Table 1-2

Controls, Connectors and Indicators
 (See Figure 1-1)

Ref Control Type Function

1	EXT BIAS	Binding-post pair, 3/4-inch spaced	Allows connection of an external dc-bias voltage of up to 800 V .
2	BIAS VOLTAGE RANGE	Six-position rotary switch	Selects internal dc bias supply and corresponding meter ranges; $2,6,20,60,200$, or 600 V .
3	NULL meter	$50-\mu \mathrm{A}$ meter	Measures detector output voltage, (null), bias voltage, or leakage current as determined by function control.
4	LEAKAGE CURRENT RANGE	Six-position rotary switch	Selects leakage-current range of NULL meter when function control (20) is set to LEAKAGE CURRENT. Full-scale currents are 60,200 , or $600 \mu \mathrm{~A} ; 2,6$, or 20 mA .
5	BIAS switch	Two-position toggle switch	Allows internal or external bias voltage to be applied to or removed from capacitor under test.
6	BIAS ADJUST	Combination switchpotentiometer	Extreme counter-clockwise position (EXTERNAL BIAS) allows application of bias from external power supply via EXT BIAS terminals. Over remainder of range, allows continuous adjustment of internal dc bias from 0 to maximum value determined by BIAS VOLTAGE RANGE control.
7	MULTIPLIER	Ten-position rotary switch	Multiplier control for capacitance dial: $100 \mathrm{pF} ; 1,10$, or 100 nF ; 1,10 , or $100 \mu \mathrm{~F} ; 1,10$, or 100 mF .
8	DETECTOR SENSITIVITY	Potentiometer control	Provides continuously adjustable detector sensitivity for bridge measurement.
9	C dial	Potentiometer control with cali。 brated dial	Main balance control for capacitance.
10	DANGER-BIAS ON	Incandescent lamp	Lit when BIAS switch is in CHARGE position, to warn of possible lethal energy at UNKNOWN terminals.
11	+ UNKNOWN	Binding-post pair, 3/4-inch spaced	Allows connection of positive side of unknown capacitor.
12	GUARD	Single binding post	Furnishes guard voltage for 3 -terminal measurements to reduce stray capacitance.
13	- UNKNOWN	Binding-post pair, 3/4-inch spaced	Allows connection of negative side of unknown capacitor.
14	CAP ACITOR CHARGED	Incandescent lamp	Lit when charge on capacitor exceeds one volt.
15	POWER	Two-position toggle switch	Energizes instrument.
16	ORTHONULL	Mechanical lever	Engages Orthonull mechanism to simplify balance operation, to avoid false nulls and sliding balances with lossy capacitors ($\mathrm{D}>1$).
17	Pilot Lamp	Incandescent lamp with GR monogram	Lit when POWER switch is ON.
18	D dial	Potentiometer control with calibrated dial	Main balance control for dissipation factor.
19	GEN LEVEL MAX VCLTS	Three-position rotary s witch	Selects generator voltage applied to the bridge: $0.2,0.5$, or 2 V , rms. The ac voltage on the unknown capacitor will always be less.
20	Function switch	Six-position rotary switch	Selects generator source and polarity (INT NORM, INT REV, EXT NORM, or EXT REV) and meter indication (NULL, BIAS)
21	EXT GEN	Binding-post pair, $3 / 4 *$ inch spaced	VOLTAGE, or LEAKAGE CURRENT). Allows connection of an external generator; 40 Hz to 1 kHz , 1 W , max.

Binding-post pair, 3/4-inch spaced
Six-position rotary
switch

Six-position rotary switch

Two-position toggle switch
Combination switch potentiometer

Ten•position rotary switch
Potentiometer control

Potentiometer control with cali。 brated dial

Incandescent lamp
Binding-post pair, 3/4-inch spaced
Single binding post
Binding-post pair, 3/4-inch spaced
Incandescent lamp
Two-position toggle switch
Mechanical lever

Incandescent lamp
with GR monogram
Potentiometer con-
with calibrated

Three-position
rotary switch
Six-position rotary

Binding-post pair, 3/4*inch spaced

Selects internal dc bias supply and corresponding meter ranges 200, or 600 V. age current as determined by function control.
Selects leakage-current range of NULL meter when function control (20) is set to LEAKAGE CURRENT. Full-scale currents are 60, 200, or $600 \mathrm{MA}, 2,6$, or 20 mA . removed from capacitor under test.
Extreme counter-clockwise position (EXTERNAL BIAS) allows application of bias from external power supply via EXT BIAS ment of BIAS VOLTAGE RANGE control.
Multiplier control for capacitance dial: $100 \mathrm{pF} ; 1,10$, or 100 nF ; 1,10 , or $100 \mu \mathrm{~F} ; 1,10$, or 100 mF .
Provides continuously adjustable detector sensitivity for bridge Main balance control for capacitance.

Lit when BIAS switch is in CHARGE position, to warn of possible lethal energy at UNKNOWN terminals.
Allows connection of positive side of unknown capacitor.

Furnishes guard voltage for 3-terminal measurements to reduce tray capacitance.

Allows connection of negative side of unknown capacitor.

Lit when charge on capacitor exceeds one volt.

Energizes instrument.
Engages Orthonull mechanism to simplify balance operation, to
Lit when POWER switch is ON.

Main balance control for dissipation factor.

Selects generator voltage applied to the bridge: $0.2,0.5$, or 2 V , rms. The ac voltage on the unknown capacitor will always be less.
Selects generator source and polarity (INT NORM, INT REV, EXT NORM, or EXT REV) and meter indication (NULL, BIAS) Allows connection of an external generator; 40 Hz to 1 kHz , $1 \mathbb{W}$, max.

1.5 SYMBOLS, ABBREVIATIONS, AND DEFINITIONS.

Definitions for symbols used on the panel of the Type 1617 and for abbreviations used in this instruction manual are as follows:
C capacitance (see below for units)
C_{s} series capacitance $C_{s}=\left(1+D^{2}\right) C_{p}$
C_{p} parallel capacitance $C_{p}=\frac{1}{1+D^{2}} C_{s}$
L inductance (see below for units)
R resistance, the real part of an impedance - (see below for units)
R_{s} series resistance
R_{p} parallel resistance
X reactance, the imaginary part of an impedance
Z impedance
D dissipation factor $\frac{R}{X}=\frac{1}{Q}$
for capacitors $=\omega \mathrm{C}_{\mathrm{s}} \mathrm{R}_{\mathrm{s}}=\frac{1}{\omega \mathrm{C}_{\mathrm{p}} \mathrm{R}_{\mathrm{p}}}$
PF power factor $=\frac{R}{|Z|}=\frac{R}{\sqrt{R^{2}+\mathrm{X}^{2}}}=\frac{D}{\sqrt{1+\mathrm{D}^{2}}}$
$E S R$ equivalent series resistance $=R_{s}=\frac{D}{\omega C_{s}}$
f frequency in hertz (Hz)
ω angular frequency $(\mathrm{rad} / \mathrm{sec})=\omega=2 \pi \mathrm{f}$
F farad, unit of capacitance
mF millifarad $=10^{-3} \mathrm{~F}=10^{3} \mu \mathrm{~F}$
$\mu \mathrm{F}$ microfarad $=10^{-6} \mathrm{~F}=10^{3} \mathrm{nF}=10^{6} \mathrm{pF}$
nF nanofarad $=10^{-9} \mathrm{~F}=10^{-3} \mu \mathrm{~F}=10^{3} \mathrm{pF}$
pF picofarad $=10^{-12} \mathrm{~F}=10^{-6} \mu \mathrm{~F}=10^{-3} \mathrm{nF}$
Ω ohm, unit of resistance
$\mathrm{m} \Omega$ milliohm $=10^{-3} \Omega$
$\mathrm{k} \Omega$ kilohm $=10^{3} \Omega$
$\mathrm{M} \Omega$ megohm $=10^{6} \Omega=10^{3} \mathrm{k} \Omega$
H henry, unit of inductance
mH millihenry $=10^{-3} \mathrm{H}$
$\mu \mathrm{H}$ microhenry $=10^{-6} \mathrm{H}$
nH nanohenry $=10^{-9} \mathrm{H}$

1.6 OPERATOR SAFETY.

Measurements on charged capacitors are inherently dangerous. The Type 1617 Capacitance Bridge, being a self-contained instrument, is naturally safer than a temporary clip-lead set up and all possible safety features were included in its design. The operator must follow instructions at all times to ensure safe use of the instrument.

Connect or disconnect the capacitor to be tested only when both warning lights are off. This means that bias is not applied (CHARGE-DISCHARGE switch on the DISCHARGE position) and that there is less than 1 volt across the capacitor.

Do not rely solely on the warning lights (the lamps might burn out), especially if repeated measurements are to be made; use insulated test clips, rubber gloves, and a chair insulated from the ground.

Several capacitors in the instrument itself can carry charges of lethal energy; they are safe only when both warning lights are off.

When no bias is to be applied, set the VOLTAGE/ RANGE switch to 2 V , the BIAS ADJ to EXT, and the CHARGE-DISCHARGE switch to DISCHARGE. Under these conditions, an accidental change in the setting of one of the controls will not endanger the operator.

If the bridge is never going to be used with internal dc bias, the bias supply can be disabled by disconnection of the leads to pins 10 through 15 on the powertransformer plate (see Figure 6-2). If only the lower bias voltages are to be used, the higher voltages can be eliminated by disconnection of pin 12 of the power transformer and by shorting the appropriate resistor (Table 1-3).

Table 1-3

Bias Rable l-3 Variation		
Resistor Sharted	Value	Range Eliminated
R115	402 K	600 V
R154	140 K	200 V
R153	40.2 K	60 V
R152	14 K	20 V
R151	4.02 K	6 V

Installation-Section 2

2.1 GENERAL.

2.1.1 DIMENSIONS.

The over-all dimensions for the bridge are shown in Figure 2-1.

2.1.2 ENVIRONMENTAL CONSIDERATIONS.

The Type 1617 bridge is designed to operate at ambient temperatures from 0 to $50^{\circ} \mathrm{C}$ and to be stored at temperatures from -40 to $+70^{c}$.

2.2 MOUNTING.

The Type 1617 Bridge is supplied in portable mechanical configurations. An adaptor set (P/N 0481-9759) converts the portable model to rack model. Each adaptor set contains a relay-rack panel, a hardware set, and instructions for rack mounting. A rack model can be stack mounted for bench use in combinations with other instruments.

Figure 2.1. Dimensions of the Type 1617 bridge in the portable and rack models.

2.2.1 PORTABLE TO RACK MOUNT CONVERSION. (Figure 2-2).

To convert from portable to rack mount:
a. Open the instrument fully to its horizontal position.
b. Remove the 10032 screws (A) that secure the instrument to the cabinet and lift the instrument out of the cabinet.
c. Remove the pivot studs (B) and lift the cabinet off the cover-and-handle assembly.
d. Attach $1 / 4-28$ screws (C) in place of the pivot screws. Secure them with $1 / 4$-inch lockwashers and nuts and then add a $1 / 4$-inch flatwasher to each screw.
e. Replace the instrument in the cabinet and secure it with the $10-32$ screws (A), removed earlier.
f. Attach the brackets (D) to the panel with no. 10 lockwashers and nuts; do not tighten.
g. Add a no. 10 flat washer to the top and bottom lugs, and attach the plates (E) with no. 10 lockwashers and nuts; do not tighten.
h. Place the panel over the instrument; slide the slit in each bracket over the $1 / 4-28$ screw (C), keeping the flatwasher between the instrument and the bracket.
i. Slide the plates over the gasket, align the assembly, and tighten all nuts.

2.2.2 RACK-TO-PORTABLE CONVERSION.

To convert a rack instrument for portable use, follow the reverse procedure given in paragraph 2.2.1. The parts required for this conversion are listed in Table 2-1.

Table 2-1

Parts Required for Rack-To-Portable Conversion Quantity		
Description	Part No.	
1	Handle and Bracket Assembly	$1617-2010$
1	Cover Assembly	$4170-2086$
2	Pivot Stud	$4170-1000$
2	Plate Nut	$4170-1376$
2	Spacer	$4170-0700$
2	Screw, No. 1/4-28, 3/8	$7040-0400$
4	Screw, No. 10-32, 3/8	$7080-1000$
4	Washer	$8040-2400$
2	Washer	$8050-0100$

Figure 2-2. Procedure to rack mount a portable model.

2.2.3 STACK MOUNTING.

A rack model can also be stack mounted with other GR relay-rack instruments fitted with end frames for bench use. Stack-mounted accessories required for the Type 1617 are listed in Table 2-2 and mounting instructions (Form 5301-0145A) are available with the accessories.

Table 2-2

	Stack-Mounting Accessories Required	
Quantity	Part Number	Description
1	$5310-9682$	End-frame set
1	$5310-3301$	Hardware Set

2.3 POWER CONNECTION.

2.3.1 GENERAL.

Use the attached three-wire power cord to connect the bridge to a source of power as indicated on the tag located on the cabinet beneath the power cord (Figure $2 \cdot 3$). The long cylindrical pin (ground) is connected directly to the metal case of the instrument, hence to the EXT GEN ground connector and -UNKNOWN ground connector on the front panel.

2.3.2 115-VOLT LINE.

Power required is 105 to $125 \mathrm{~V}, 50$ or 60 Hz (depending on model of bridge), 18 W . An input plate for $115-\mathrm{V}$ operation, $\mathrm{P} / \mathrm{N} 5590-0700$, is used for $60-\mathrm{Hz}$ models; $\mathrm{P} / \mathrm{N} 5590-1163$ for $50-\mathrm{Hz}$ models. It attaches to the cabinet beneath the power cord by means of two $4-40 \mathrm{x}$ 3/16 screws with attached lockwashers, P/N 7090-4030. On the terminal plate of the power transformer (Figure $6-2$), terminal 1 is connected to terminal 3 and terminal 2 to terminal 4. Fuses for F501 and F502 are 0.2 A , P/N 5330-0600 each (Figure 6-13).

2.3.3 230-VOLT LINE.

Power required is 210 to $250 \mathrm{~V}, 50$ or 60 Hz (depending on model of bridge), 18 W . An input plate for $230-\mathrm{V}$ operation, $\mathrm{P} / \mathrm{N} 5590-1667$, is used for $60-\mathrm{Hz}$ models; $\mathrm{P} / \mathrm{N} 5590-1666$ is used for $50-\mathrm{Hz}$ models. It attaches to the cabinet beneath the power cord by means of two $4-40 \times 3 / 16$ screws with attached lockwashers, $\mathrm{P} / \mathrm{N} 7090-4030$. On the terminal plate of the power transformer, terminal 2 is connected to terminal 3. Fuses for F501 and F502 are 0.1 A, P/N 5330-0400 each (Figure 6-13).

2.3.4 CONNECTIONS.

The EXT GEN, EXT BIAS and UNKNOWN terminals are standard $3 / 4$-inch-spaced binding posts which accept banana plugs, standard telephone tips, alligator clips, crocodile clips spade terminals and all wire size up to number ten.

Two plug-in cable assemblies are supplied with the bridge expressly for the UNKNOWN terminal.

The two-cable assembly (Figure 3-2) has a shielded positive terminal. The shield is connected to the guard and the two positive and the two negative terminals are linked internally. It should be used for three-terminal measurements (refer to paragraph 3.1).

The four-cable assembly (Figure 3-3) is used for four terminal measurements (refer to paragraph 3.1). The cables of both assemblies are terminated in clip leads in an insulated rubber sleeve.

Methods of connection to the measurement terminals.

Operation-Section 3

WARNING

It is possible to apply lethal voltage across a capacitor by means of this bridge. The energy stored in the unknown capacitor, and even in the internal capacitor, can be extremely dangerous to the operator; please follow the instructions carefully.

Never connect or disconnect anything at the UNKNOWN terminals unless the BIAS CHARGE-DISCHARGE switch is on DISCHARGE and the two warning lamps are off.

When no bias voltage is applied, set the VOLTAGE RANGE switch to 2 V , the BIAS ADJ to EXT and the BIAS CHARGE-DISCHARGE switch to DISCHARGE.

When operating the bridge at high voltage level, use every possible precaution to avoid contact with the UNKNOWN terminals, or the positive terminal of the capacitor under test.

3.1 CONNECTION OF THE UNKNOWN CAPACITOR.

3.1.1 GENERAL.

The panel of the Type 1617 Capacitance Bridge offers five separate terminals at which to connect the unknown. There are two current terminals, two potential terminals and one guard terminal; two shorting links are also provided Figure 3-1. This array permits two-, three-, four-, and five-terminal measurements, as dictated by the value of the unknown and its location.

3.1.2 LOW-VALUED CAPACITORS.

In this range (less than 10 nF), since shunt stray capacitance is apt to introduce an important error, three-terminal connections should be made. The supplied plug-in cable assembly ($\mathrm{P} / \mathrm{N} 1617-2200$) achieves this connection simply (Figure 3-2). The linkage of the positive and the negative terminals is achieved internally in the assembly. It can also be done as follows: Connect the inner conductor of a shielded cable to either positive terminal, the shield of the cable to the guard terminal, and any clip lead to either negative terminal (both positive and negative terminals should be

Figure 3-1. UNKNOWN and GUARD terminals on the bridge.
linked). Then connect the unknown at the end of the two cables and proceed with the measurement.

The residual ("zero") of the bridge (i.e., the reading of the C dial when the bridge is balanced while on the lowest range with the unknown disconnected) is to be subtracted from the C reading. It is small (about 4 pF) and can be considered negligible on the other ranges.

3.1.3 MEDIUM-VALUED CA PACITORS.

Capacitance measurements in this range (about $10 n \mathrm{~F}$ to $100 \mu \mathrm{~F}$) are not appreciably affected by shunt capacitance or series impedances, unless the leads are more than a few feet long. Therefore, most any type of clip leads may be used although the two-lead cable assembly supplied, P / N 1617-2200, is particularly convenient.

If the leads are very long, the lower capacitance values should be connected with a guarded, shielded cable and the higher values should use a four-lead connection (see paragraph 4.5.1).

NOTE

In 2- and 3-terminal measurements, when the assembly is not used, the bridge will not balance unless the shorting links are connected.

Figure 3-2. Schematic of the 3terminal connection (guarded), using the two-lead plugoin assembly (P / N 1617-2200).

3.1. 4 HIGH-VALUED CAPACITORS.

For the range $100 \mu \mathrm{~F}$ to 10 mF of capacitance, the lead impedance might introduce a sizeable D error in a two-terminal measurement. For example, $100 \mu \mathrm{~F}$ measured with the supplied two-lead cable assembly at 120 Hz gives a D reading higher than the actual value by 0.005 .

Four-terminal measurements are necessary for better D accuracy. The bridge connection is made convenient with the supplied cable assembly (P / N 1617-2210). When a four-lead connection is made to a capacitor (Figure 3-3), the bridge will measure the effective capacitance and loss of the impedance between the junction of the two positive leads and the junction of the two negative ones. In effect, the unknown starts where it becomes two-terminal. Figure 3-4 shows different types of four-terminal connections, the effective impedance measured by the bridge being from A to B .

NOTE

Disconnect the shorting links when making four-terminal measurements.

3.1.5 VERY HIGH VALUED CAPACITORS.

Four-terminal connections should be used on very large capacitors (10 mF to 1 F) not only to avoid large D errors due to lead resistance, but also to avoid capacitance errors caused by lead inductance.

While a four-lead connection removes the effect of the resistance and self-inductance of each lead, some care must be used to avoid mutual inductance between the outer two ("current") leads and the inner two ("potential") leads; see Figure 3-5. Mutual inductance here causes an induced voltage that increases the effective value of the unknown. This mutual inductance can be greatly reduced by twisting together either the two outer leads or the two inner leads as shown in Figure 3-6.

This precaution against mutual inductance is also important when lower capacitance is measured at higher frequencies, because the error is a function of $\omega^{2} \mathrm{MC}_{\mathrm{x}}$, where M is the total mutual inductance. There is always some mutual inductance present at the bridge terminals and this limits the range of the bridge at higher frequencies.

Figure 3-3. A 4-terminal connection using the four-lead plugin assembly.

Figure 3-4. Different types of 4-terminal connections. The unknown is measured from A to B.

NOTE

The ranges indicated in the above paragraphs are quite arbitrary and are intended only as guides. The type of connection used for a given capacitance might also depend on the length of the leads, and the D and C accuracies desired.

3.2 CAPACITANCE MEASUREMENT PROCEDURE INTERNAL GENERATOR.

3.2.1 NO BIAS APPLIED.

To measure an unknown capacitor with no bias applied proceed as follows: Safety measures:

Place the BIAS CHARGE-DISCHARGE switch at DISCHARGE.

Set BIAS ADJ to EXT BIAS (EXT BIAS terminals must be shorted).

Set the BIAS VOLTAGE RANGE switch to 2 V .
a. Connect the bridge to the line and turn POWER on.
b. Connect the unknown capacitor (refer to paragraph 3.1).
c. Set the function switch to INT 120C* either NORMAL or REVERSE.
d. Select the maximum $A C$ voltage desired on GEN LEVEL MAX VOLTS.
e. Turn the DETECTOR SENSITIVITY counterclockwise (minimum sensitivity).
f. If the approximate value is known, set the MULTIPLIER switch accordingly.
g. Increase the sensitivity (DETECTOR SENSITIVITY clockwise) to give an upscale deflection.
h. Adjust the C and D dials to obtain a minimum deflection on the NULL meter. Repeat this process until the best null for the highest feasible sensitivity is obtained.

NOTE

When the D of the unknown is greater than one, use the Orthonull ${ }^{\mathrm{k}}$ (ganging the C and D dials) will avoid false nulls and speed the balance.
i. Multiply the C-dial setting by the MULTIPLIER setting to obtain the capacitance of the unknown.
j. Read the dissipation factor directly on the D dial.

3.2.2 BIAS APPLIED. WARNING - See Page 9.

To measure an unknown capacitor with bias applied, proceed as follows:
a. Move the BIAS CHARGE-DISCHARGE switch to DISCHARGE.
b. Connect the bridge to the line and turn POWER on.
c. Connect the unknown (refer to paragraph 3.1).
d. Set the function switch to BIAS VOLTAGE.
e. Set BIAS VOLTAGE RANGE switch on the desired range.
f. Move the BIAS CHARGE/DISCHARGE switch to CHARGE. DANGER-BIAS ON lamp must glow.
g. Adjust the BIAS ADJ knob until the meter reads the desired voltage (do not exceed the rating of the unknown).
h. Proceed with step c through j of paragraph 3.2.1.
i. Throw the CHARGE/DISCHARGE switch on DISCHARGE before disconnecting the unknown.

3.2.3 RANGE AND ACCURACY.

With the internal generator, the C accuracy is $\pm 1 \%$ $\pm 1 \mathrm{pF}$ from 0 to 0.11 F . The residual ("zero of the bridge") to be subtracted from the reading is approxi-

[^1]

Figure 3.5. When "current" and "potential" leads form concentric loops (left), the resulting mutual inductance (right) affects the value of the capacitance being measured.

Figure 3-6. Reduction of the effect of mutual inductance in the leads.
mately 4 pF . From 0.11 to 1.1 F , the accuracy becomes $\pm 2 \%$. The D accuracy ($\pm 0.001 \pm 0.01 \mathrm{C}$ in $\mathrm{F} \pm 2 \%$) depends on C. This naturally assumes that the correct connections (refer to paragraph 3.1) have been used to minimize errors.

When bias voltage is applied, the accuracy specifications are the same, but the sensitivity of the bridge is lessened by the impedance of the internal capacitor always across the bias supply (refer to paragraph 5.5).

3.3 LEAKAGE CURRENT MEASUREMENT.

3.3.1 GENERAL.

The leakage current through capacitors of most types is a function of time. A common practice for many types of capacitors is to use the value obtained after voltage is applied for two minutes, but other soaking times are also used so that this parameter should be specified.

The current measuring range of the Type 1617 is limited to $60-\mu \mathrm{A}$ to $20-\mathrm{mA}$, full scale; $0.5 \mu \mathrm{~A}$ can be resolved. This range is sufficient for most aluminum capacitors and some tantalum types. An external microammeter may be used for lower leakage currents (refer to paragraph 4.2). The available current from the internal power supply limits the maximum to about 15 mA. An external power supply and meter should be used if the leakage is higher than this.

3.3.2 MEASUREMENT PROCEDURE.

The procedure is as follows:
a. Perform steps a through g of paragraph 3.2.2.
b. Set the function switch to LEAKAGE CURRENT.
c. Set the LEAKAGE CURRENT RANGE switch on a suitable range.
d. Read the leakage current on the meter; the fullscale reading is that set in the preceding step.
e. Throw the BIAS CHARGE-DISCHARGE switch to DISCHARGE before disconnection of the unknown.

3.3.3 CHARGING TIME.

The time required to charge a capacitor from a current-linked supply is:

$$
t=\frac{C V}{I} \text { (seconds, farads, volts, and amperes) }
$$

The capacitance is the sum of the unknown capacitance and the internal power-supply by-pass capacitance. The current is the difference between the maximum power supply current, approximately 15 mA , and the leakage current in both capacitors. For lowe energy-unknown capacitors, the charging time is that of the internal capacitor, which is about 4 seconds. For high-energy capacitors, the time constant may become much longer. If charging is too slow, an external supply of higher current rating should be used.

If the internal power supply has not been used in some time, the by-pass capacitors may become somewhat leaky, resulting in very slow charging until they are reformed. This is particularly noticeable on the higher voltage ranges. Note that if the total leakage of the unknown and by-pass capacitors exceeds the available current, the voltage will never reach its correct value.

The charging time also depends on the value of the ratio-arm resistor in series with the unknown, but this delay will not be noticed on the voltmeter which reads the total voltage applied to the bridge (see Figure 3-7). However, if the capacitance range switch is set to the correct capacitance range, this time constant is negligible.

3.3.4 METER RESPONSE.

The ammeter response is purposely slow in order to protect the meter from pinning when it passes excessive current (for example, when the bias is discharged with the ammeter in the circuit). The meter

indication may become very slow, when very large capacitors with low leakage are measured, because the meter time constant is a function of the meter-range resistor and the unknown capacitor.

The voltage applied to the unknown during leakagecurrent measurements is slightly reduced by the amo meter voltage drop. This drop is proportional to the meter reading and is 0.2 V at full scale. This voltage change is of little consequence except at very low applied voltages. However, it does introduce a small transient in the ammeter which may indicate the current flow necessary to re-establish equilibrum.

3.4 VOLTAGE MEASUREMENT ACCURACY.

The voltmeter indicates $2-\mathrm{V}$ to $600-\mathrm{V}$ full scale in six ranges with an accuracy of $\pm 3 \%$. The voltage measured is the voltage applied to the bridge input and, in most cases, this is the voltage across the unknown. However, when a very leaky capacitor is measured, the voltage drop in the ratio-arm resistor caused by the higholeakage current may result in the actual voltage on the capacitor being less than the voltage indicated (see Figure 3-7). In order to obtain the proper voltage in the capacitor, the voltmeter must be set to read E_{c} (1 $+\frac{R_{A}}{R_{e}}$). This difficulty is very rarely encountered if the capacitance switch is set to the correct range.

3.5 MAXIMUM DISCHARGE ENERGY.

Theoretically, the maximum energy on an unknown capacitor connected to the bridge could be 320,000 joules (800 V in 1 F). This energy would certainly destroy the discharge resistor and switch if internaldischarge circuits were used. Fortunately, nobody makes a capacitor of such capability. However, large capacitors are made for special purposes (such as welding) that can damage the discharge resistors, so that an energy limit is necessary. Therefore, the maximum voltage that should be discharged by the internal circuit is given in Table 3-1.

Also, if an external bias supply is used, the rate of charging and discharging may be high enough to overheat the discharge resistors, even though the limits of Table 3-1 are not exceeded. The average power dissipated should be limited to 5 watts.

Maximum voltage for Internal Discharge	
Capacitance Range	Maximum Voltage
0 to $100 \mu \mathrm{~F}$	800 V
0.1 to 1 mF	400 V
1 to 10 mF	100 V
10 to 100 mF	20 V
0.1 to 1 F	6 V

Special Measurements-Section 4

WARNING

It is possible to apply lethal voltage across a capacitor by means of this bridge. The energy stored in the unknown capacitor, and even in the internal capacitor, can be extremely dangerous to the operator; please follow the instructions carefully.

Never connect or disconnect anything at the UNKNOWN terminals unless the BIAS CHARGE-DISCHARGE switch is on DISCHARGE and the two warning lamps are off.

When no bias voltage is applied, set the VOLTAGE RANGE switch to 2 V , the BIAS ADJ to EXT and the BIAS CHARGE-DISCHARGE switch to DISCHARGE.

When operating the bridge at high voltage level, use every possible precaution to avoid contact with the UNKNOWN terminals, or the positive terminal of the capacitor under test.

4.1 USE OF AN EXTERNAL GENERATOR.

4.1.1 CONNECTION.

The preferred connection for an external generator is at the EXT GEN terminals. The terminals are connected to the primary of the input transformer whose secondary winding is selected by the GEN LEVEL switch (Figure 4-1). If $5 \mathrm{~V}, \mathrm{rms}$, is applied to the terminals, the voltage applied to the bridge will be as indicated by this switch. Note that the input to the bridge may be reversed by the function switch to check for stray coupling effects (refer to paragraph 4.4).

At low frequencies, more voltage may be applied to the bridge if the external generator is connected to the EXT BIAS terminals (Figure $4-2$, see also paragraph 4.1.3). Use a shielded lead to avoid coupling to the unknown and, because the bridge is grounded, do not ground either side of the oscillator, to avoid ground loops.* If, however, bias has to be applied, it can be done as shown in Figure 4-3.

The GR 1311 Audio Oscillator is recommended as an ideal external generator for driving the Type 1617.

4.1.2 RANGE AND ACCUR ACY.

Table 4-1 indicates the nominal capacitance range of the Type 1617 Capacitance Bridge for better than 2% accuracy at different frequencies above 120 Hz .
The low end of the capacitance range is limited to 500 pF above 2 kHz , because of the frequency characteristic

[^2]

Figure 4.1. Location of the external generator connection (EXT GEN terminals).

Table 4-1

RANGE LIMITS At Different Frequencies (Less Than 2\% Error)		
Frequency	Low Limit*	High Limit**
120 Hz	50 pF	1.1 F
200 Hz	50 pF	0.5 F
500 Hz	50 pF	80 mF
1 kHz	150 pF	20 mF
2 kHz	500 pF	5 mF
5 kHz	500 pF	$800 \mu \mathrm{~F}$
10 kHz	500 pF	$200 \mu \mathrm{~F}$
*After zero **4-terminal	rection. asurement	h twisted leads.

of the $10 \mathrm{M} \Omega$ ratio arm $\left(R_{A}\right)$. The high end is limited by the mutual inductance in the leads and between the terminals.

The low-frequency limit is approximately 20 Hz , at which point the meter starts to follow individual cycles. Full accuracy below 30 Hz is difficult to obtain on the lowest and highest ranges, because the limit on the input voltage (refer to paragraph 4.1.3) limits the sensitivity. At low frequencies, many low-powered oscillators will not drive the input inductance (approximately 50 mH) hard enough to give sufficient sensitivity. The D accuracy is $\pm 0.001 \pm 0.01 \mathrm{C}$ (in F) $\pm 2 \%$, from 40 to 120 Hz , and $[\pm 0.001 \pm 0.01 \mathrm{C}($ in F$)] \frac{\mathrm{f} \mathrm{Hz}}{120} \pm 2 \%$, above 120 Hz .

4.1.3 MAXIMUM AC VOLTAGE AND POWER.

The maximum voltage that should be applied to the EXT GEN terminals is $\frac{1}{10} \mathrm{f}_{\mathrm{Hz}}$ or 10 V , rms, whichever is less. The maximum ac applied to the EXT BIAS terminals is 4 V , rms. Actually, more voltage (but less than 100 V) may be applied to the bridge when the C dial is set up-scale as long as the voltage on the UNKNOWN does not exceed 4 V (which would overdrive the guard amplifier).

Thus, the above fixed limits may be multiplied by:

$$
\sqrt{1+(0.0063 \times \mathrm{f} \times \mathrm{C} \text { dial reading })^{2}}
$$

The power input should be limited to 1 watt. (The output of the GR 1311 is limited to 1 watt.)

4.1.4 MEASUREMENT PROCEDURE.

The procedure is the same as with the internal generator except that the function switch must be set to EXT GEN NORMAL or REVERSE, and the D reading must be multiplied by $\frac{\mathrm{f} \mathrm{Hz}}{120}$. The generator level is adjusted on the external generator.

4.2 USE OF AN EXTERNAL MICROAMMETER.

The lowest range of the microammeter on the Type 1617 Capacitance Bridge is $60 \mu \mathrm{~A}$, full scale. Some
electrolytic capacitors (tantalum, in particular, and many other types) will require more sensitivity. This is easily accomplished by use of a sensitive external meter, such as the Type 1230 Electrometer (measures from $\pm 1 \mathrm{~mA}$ down to $0.3 \mu \mu \mathrm{~A}$, or $0.3 \times 10^{-12} \mathrm{~A}$, full scale). The Weston 1946 T (available in 5,10 or $20-\mu \mathrm{A}$, full-scale versions, with 2% accuracy) or the Westinghouse 371 (3% accuracy, 20μ A full scale), are acceptable substitutes.

Connect the external meter in series with the unknown, with its negative terminal to the negative terminal of the bridge (Figure 4-4). It is now part of the unknown and has to be shorted out in a capacitance measurement to avoid error, or when charging the capacitor to avoid overload.
a. Turn ac signal off when making leakage-current measurements by setting the METER switch to BIAS VOLTAGE.
b. With the 4 -terminal connection shown, note that the + meter terminal is grounded, so that the - terminal cannot be grounded. Also, in this connection keep the meter voltage drop below 0.1 V . (There are rectifiers between the two -1617 terminals).

Figure 4-4. Use of an external ammeter for 2-terminal measurement, (top), 4-terminal measurement (bottom).

4.3 EXTERNAL BIAS SUPPLY (Table 3-1).

The internal bias supply will apply up to 600 V to the unknown; up to 800 V can be applied by use of an external dc supply. To apply external bias:
a. Set the BIAS ADJ switch to EXTERNAL BIAS.
b. Remove the shorting link from the EXT BIAS terminals and connect the power supply to these terminals.
c. To preserve the sensitivity of the bridge, the effective ac impedance of the supply has to be very low, and this is ensured by placing a bypass capacitor as shown in Figure 4-5. This capacitor should be at least of the same order of magnitude as the unknown.

WARNING

> The bypass capacitor has the same bias voltage across it as the unknown. Make sure the dc supply is off and the BIAS CHARGE-DISCHARGE switch is on DISCHARGE before disconnecting or connecting it.

The measurement procedure, once the external dc supply is connected, is the same as with the internal bias supply. The energy available from the external bias supply should be limited to 1 W so that if the unknown is shorted, the bridge ratio-arm resistor will not be damaged.

Figure 4-5. Connection of the external bias supply.

4.4 USE OF THE NORMAL/REVERSE POSITIONS.

Because the bridge test signal is synchronous with the power line, $120-\mathrm{Hz}$ hum pickup will cause a bridge error. The NORMAL/REVERSE positions of the function switch allow the test signal to be reversed (Figure 4-6) with respect to the power line, so that the presence of pickup can be ascertained.

Should the D or C readings differ between balances on the NORMAL and REVERSE position, the best answer is the average of the two readings. This difficulty is most likely to occur on the lowest or highest. ranges. Use the maximum possible signal level to reduce the effect.

Figure 4-6. The reversing switch.

4.5 OTHER APPLICATIONS.

4.5.1 REMOTE MEASUREMENTS.

When long leads are used, the two principal sources of error are the lead impedance (it can be several ohms)
and the stray capacitance. For D accuracy, four-lead connections are necessary, and to reduce the stray capacitances, the positive lead should be shielded and the shield guarded.

When both errors may be important, a five-terminal measurement can be made (Figure 4-7).

Figure 4-7. A 5-terminal connection.

4.5.2 INDUCTANCE MEASUREMENT.

Series Substitution Method. Inductance can be determined from the measurement of the net effective capacitance of the unknown inductor in series with a known capacitor of suitable value. The series capacitor must be small enough so that the net reactance of the combination is capacitive, and it must be large enough so that a significant change in effective capacitance results. Proceed as follows:
a. Connect the inductor and the capacitor in series (Figure 4-8) to the bridge.
b. Short circuit the inductor and balance the bridge. Observe the C and D readings. Call them C_{1} and D_{1}.
c. Remove the short circuit and rebalance the bridge. Call the new readings C_{2} and D_{2}.
d. Compute the series inductance (Ls) and the series resistance (Rs) from:

$$
L_{s}=\frac{C_{2}-C_{1}}{\omega^{2} C_{1} C_{2}} \quad R s=\frac{D_{2} C_{1}-D_{1} C_{2}}{\omega C_{1} C_{2}}
$$

with the C's in farads and the D's in absolute values.

Parallel substitution Method. For measurements using the parallel substitution method, proceed as follows:
a. Connect the unknown inductor and the capacitor in parallel (Figure 4-9).
b. Disconnect the high lead of the inductor and balance the bridge. Observe the C and D readings. Call them C_{1} and D_{1}.
c. Connect the inductor and rebalance the bridge. Call the new reading C_{2} and D_{2}.
d. Convert C_{1} and C_{2} To C_{1}^{\prime} and C_{2}^{\prime}, the effective parallel value, with

$$
C^{\prime}=\frac{C}{1+D^{2}}
$$

e. Compute the parallel inductance (L_{p}) and resistance (Rp) from

$$
L_{p}=\frac{1}{\omega^{2}\left(C_{1}{ }^{\prime}-C_{2}\right.} ; \quad . \quad R_{p}=\frac{1}{\omega\left(D_{2} C_{2}^{\prime}=D_{1} C_{1}^{\prime}\right)}
$$

with the C's in farads and the D's in absolute values.

Figure 4-9. Inductance measurement by the parallel-substitution method.

4.5.3 SERIES AND PARALLEL COMPONENTS.

An impedance that is neither a pure reactance nor a pure resistance may be represented, at any specific frequency, by either a series or a parallel combination of resistance and reactance. The values of resistance and reactance used in the equivalent circuit depend on whether a series or a parallel combination is used. The equivalent circuits are shown in Figure 4-10.

The relationships between the circuit elements are:

$$
\begin{aligned}
& Z=R_{s}+\frac{1}{j \omega C_{s}}=\frac{\frac{R_{p}}{j \omega C_{p}}}{R_{P}+\frac{1}{j \omega C_{p}}}=\frac{D^{2} R_{p}+\frac{1}{j \omega C_{p}}}{1+D^{2}} \\
& D=\frac{1}{Q}=\omega R_{s} C_{s}=\frac{1}{\omega R_{p} C_{p}} \\
& C_{s}=\left(1+D^{2}\right) C_{P} ; C_{P}=\frac{1}{1+D^{2}} C_{s} \\
& R_{s}=\frac{D^{2}}{1+D^{2}} R_{p} ; R_{p}=\frac{1+D^{2}}{D^{2}} R_{s} \\
& R_{s}=\frac{D}{\omega C_{s}} ; R_{p}=\frac{1}{\omega C_{p} D}
\end{aligned}
$$

Figure 4-10. Series and parallel equivalent circuits.

4.5.4 DIELECTRIC SAMPLES MEASUREMENT.

The dielectric constant and dissipation factor of an insulating material can be determined from the measurement of the capacitance and dissipation factor of an elementary capacitor, with the material used as the insulating medium between metallic electrodes of suitable dimensions.

Two-Electrode Method. A simple two-electrode method is sufficient for most purposes. The procedure is as follows:
a. If possible, choose a sample of such shape and dimensions as to yield a capacitance of 100 pF or more. The calculation of dielectric constant is simplified if the thickness and area are easily measured and calculated, such as a disk or rectangle. If measurements are to be made at various frequencies, it is best to use sizes and shapes as specified in ASTMD-150 (available from American Society for Testing Materials, 260 Race Street, Philadelphia, Pennsylvania).
b. Measure and record the dimensions of the sample, and clean it thoroughly. (A mixture of half grain alcohol and half ether is recommended, unless either is a solvent for the material.)
c. When the sample is dry, apply a very thin film of refined petrolatum to one surface. Place a thin metalfoil electrode, preferably less than 1 mil thick, and larger than the sample, on this surface.
d. Press the electrode in place with a pad of cloth or squeegee roller and rub out any air bubbles, so that the foil is in intimate contact with the surface. Then trim the foil to the same size as the sample.
e. Apply the other electrode to the sample as described in steps c and d.

NOTE

An alternate method of forming electrodes is to brush a good silver paint (such as Dupont No. 4132 Silver Paste) on the sample and to dry it overnight at $60^{\circ} \mathrm{C}$. Such an electrode is porous to moisture, so that the dielectric can be conditioned at any desired relative humidity without removing the electrode.
f. Measure capacitance as described in paragraph 3.2.
g. Compute dielectric constant (to a first approximation) as follows:

$$
K=\frac{4.45 \mathrm{tC}}{\mathrm{~A}}
$$

where K is dielectric constant
t is thickness of the sample, in inches
C is measured capacitance, in pF
A is area of the electrodes, in square inches.
For a complete discussion of the effects of stray electric field at the edges of the electrodes, and the effect of the capacitance of the high electrode to ground, refer to ASTMD-150.

Three Electrodes Method. The guard arrangement (Figure 4-11) provides an electrical equivalent to a 3-terminal capacitance, and is measured as such.

4.5.5 LIQUID INSULATION MEASUREMENT.

Liquid insulation, such as transformer oil, requires some type of cell for measurement of capacitance and dissipation factor. The cell in its simplest form can be a multiple-plate air capacitor immersed in the liquid, or a grounded cylindrical can with a slightly smaller insulated cylindrical electrode. Such cells do not allow the accurate calculation of dielectric constant, nor do they maintain a constant voltage gradient of the liquid. These difficulties are overcome by the use of a threeelectrode cell, such as described in ASTMD-150. Such a cell is electrically equivalent to Figure and permits a 3 -terminal measurement.

Figure 4-11. Guard-electrode arrangement to measure dielectric samples.

4.5.6 TRANSFORMER INSULATION MEASUREMENT.

The insulation in a transformer, together with the primary and the secondary windings and the transformer
case, form a 3-terminal network (Figure 4-12). Usually the three capacitances are of the same order of magnitude, and any one of them can be measured directly by the bridge, if it is connected between the UNKNOWN terminals and the other two capacitances are connected to the GUARD terminal.

Figure 4-12. Capacitances existing in a transformer.

4.5.7 TEST JIGS.

The Type 1650-P1 Test Jig (refer to the appendix) is available from General Radio for faster measurements, it allows rapid 2-and 3-terminal measurement. Connections to the bridge are made through two Type 274-DB plugs and a clip lead to connect the guard. Special jigs can be made for different shapes of capacitors, or for 4-terminal measurements (paragraph 5.7.3). The principles discussed in paragraph 3.1 .4 and 3.1 .5 should be taken into account in the design of such a jig.

4.5.8 LIMIT TESTING.

The Type 1617 bridge may be set up to provide a go-no-go indication useful for component testing. The panel meter is used as the indicator. Proceed as follows:
a. Balance the bridge with one of the components to be tested (one within tolerance).
b. Offset the C dial from the balance position by the desired tolerance.
c. Adjust the SENSITIVITY control for a centerscale meter deflection.
d. Set the C dial to the nominal value of the component.
e. Connect each component to the bridge. If the meter deflection is between zero and center scale, the component is within limits.

Principles of Operation-Section 5

5.1 BRIDGE CIRCUITS.

5.1.1 GENERAL.

The circuit of the Type 1617 Capacitance Bridge is basically the familiar series-capacitance-comparison type used in most general-purpose capacitance bridges. The capacitance, C, of the unknown is proportional to R_{N} and its dissipation factor, D , to R_{S} (Figure 5-1).

5.1.2 LOW CAP ACITANCE.

On the lowest five capacitance ranges (up to $10 \mu \mathrm{~F}$), the circuit used is the simple one shown in Figure 5-1; (the guard circuit is connected for 3 -terminal measurements). The bridge circuit is oriented so that a grounded dc supply will apply a voltage to the unknown capacitor through the ratio-arm resistor R_{A}. Reasonable lead resistances and inductances cause negligible errors; for example, a $0.1-\Omega$ lead resistance introduces a D error of less than 0.001 in the measurement of a $10 \mu \mathrm{~F}$ capacitor.

5.1.3 LEAD EFFECTS ON HIGH CAPACITANCE MEASUREMENTS.

One farad is only $1.3 \mathrm{~m} \Omega$ at 120 Hz and the same $0.1-\Omega 2$ lead resistance will now result in a D reading of 70 .

Figure $5-2$ shows R_{A} and CX as 4-terminal components; the lead resistances are also drawn and their individual effects can be evaluated. First, r_{1} and r8 are

Figure 5-1. The RC bridge used on the five lower capacitance ranges.

Figure 5-2. The RC bridge circuit where the unknown and the ratio arm resistor are represented as 4 terminal components.
in series with the generator and only reduce the effective applied voltage but do not change the null condition. Then r_{2} and r_{7} are in series respectively with R_{N} and $\mathrm{R}_{\mathrm{S}}-\mathrm{C}_{S}$, which have relatively high impedance and, therefore, are little affected; r_{3} and r 6 are in series with the detector. The remaining r 4 and r_{5} (and their connection) present the main error. Their total impedance may be much higher than the impedance of either $C X$ or RA_{A}, making the voltage drop across them an important part of the applied voltage.

Tying the detector to point A, places the lead resistance in the C_{X} arm and introduces an enormous D error; tying it to point B adds the lead resistance to R_{A}, and the C measurement is erroneous. Moreover, the lead inductance, if placed in series with a very large C_{X}, would cause a capacitance error even at 120 Hz . Obviously some means of greatly reducing the error is required.

A seemingly natural way to compensate the leads effects would be to divide the voltage from A to B, in the ratio of R_{A} to the unknown or R_{N} to the $R_{S}-C_{S}$ combination, therefore applying the principle of the Kelvin double bridge (long used for dc resistance measurement) to an ac bridge. This would be done by connecting another pair of arms, similar to the R_{N} and $\mathrm{C}_{S}-\mathrm{R}_{\mathrm{S}}$ arms, from A to B and connecting the detector to the junction of these arms (Figure 5-3).

Corresponding variable components would be ganged to maintain the same ratio in both sets of arms. If the ratios between both pairs of arms were exactly the same, there would be no error, however large the lead impedances might be. Unfortunately, the ability to track with a wirewound rheostat is limited at best by its resolution. In general, tracking to much better than 1% is difficult. When measuring $1 \mathrm{~F}, 20 \mathrm{~m} \Omega$ of lead resistance and a tracking accuracy of 1% still produce a C error of over 2%.

Figure 5.3. A four-terminal capacitance bridge using the Kelvin double-bridge principle. For ac measurement on a complex impedance, two ganged adiustments are necessary.

5.1.4 THE BRIDGE CIRCUIT FOR HIGH CAPACITANCE.

A unique feature of the Type 1617 Capacitance Bridge is the compensation arrangement used to measure high-valued (low-impedance) capacitors, as shown in Figure 5-4.

Figure 5-4. The basic circuit of the Type 1617 bridge where a voltage equal to the error vol. tage, Ey, is placed in the opposite side of the bridge by a tightly coupled transformer.

Figure 5-5. Equivalent circuit of the transformer.

The creation of a voltage equal to E_{y} between the R_{N} arm and the RS-CS arm solves the problem, because the lead error is compensated by the symmetry of the circuit. This is achieved by insertion of a $1: 1$ transformer. Unfortunately, the transformer, bifilar wound on a high permeability core, is not perfect, as shown by the equivalent circuit of Figure $5-5 . \quad C_{C}$ is a capacitor placed to "resonate out" some of the effect of the mutual inductance. The coupling coefficient of the transformer differs from unity by only a few parts per million.

The bridge-balance equation yields the following:

$$
\begin{aligned}
& C_{x}=\frac{R_{N}}{R_{A}} C_{S}\left[1+\frac{r_{p}+r_{s}+r_{3}}{R_{N}}-\frac{\left(r_{4}+r_{5}\right) l_{p}}{R_{A} M}+\right. \\
& \frac{\left(r_{4}+r_{5}\right) r_{6} C_{X}\left(1-\omega^{2} M C_{c}\right)}{M}-\frac{\left(r_{4}+r_{5}\right)\left(r_{3}+r_{p}\right)}{R_{M} R_{A}}-D_{x} \\
& \left(\frac{\left(r_{4}+r_{5}\right)\left(r_{3}+r_{6}\right)\left(1-\omega^{2} M C_{c}\right)}{R_{A} \omega M}-\frac{\left(r_{4}+r_{5}\right) \omega l_{p}}{R_{A} R_{M}}+\right. \\
& \left.\left.\frac{\omega\left(l_{p}+l s\right)}{R_{N}}\right)\right]
\end{aligned}
$$

This form is quite impracticable, but a little examination will simplify the equation greatly. The first error term is taken into account in the calibr ation of R_{N}. By construction, the transformer has very small leakage inductance, making the second, sixth, and seventh terms negligible. The addition of C_{C} reduces the error in the third and fifth terms. The equation becomes:

$$
\begin{aligned}
C_{x}= & \frac{R_{N}}{R_{A}} C_{S}\left\{1+\frac{r_{4}+r_{5}}{R_{A}}\left[\frac{r_{6} C_{x}\left(1-\omega^{2} M C_{c}\right) R_{A}}{M}-\right.\right. \\
& \left.\left.\frac{r_{3}+r_{p}}{R_{M}}=\frac{D_{x}\left(r_{3}+r_{6}\right)\left(1-\omega^{2} M C_{C}\right)}{\omega M}\right]\right\}
\end{aligned}
$$

Note that the important error terms are not constant but are functions of the changing R_{A} and C_{X}, which makes complete compensation impossible.

The use of this scheme gives extremely good results; measurement of $1 F$, with $r_{4}+r_{5}=r_{6}=20 \mathrm{~m} \Omega$, gives an error of approximately 0.1%. Therefore, the specification (1% for C) makes allowance for connecting leads of considerable length when large remotely located capacitors are measured.

5.2 GUARD CIRCUIT.

Whenever stray capacitances are an important percentage of the capacitance of the unknown, shielding is necessary to prevent error. The addition of a shield to prevent stray capacitances across the unknown results in an appreciable capacitance created by the shield itself, and a guard point is required tokeep these capacitances from affecting the measurement. The guard circuit of the Type 1617 Capacitance Bridge, therefore, advantage ausly permits remote and 3-terminal measurements (refer to paragraph 3.1.4). It is also useful in that it prevents the internal shields from introducing other stray capacitances.

The junction of the R_{N} and $R_{s}-C_{s}$ arms (point A, Figure 5-6) is usually used as guard point in RC bridges. The capacitance from A to the + UNKNOWN terminal shunts the detector and causes no error. The capacitance from A to ground shunts the $R_{s}-C_{s}$ arm but is comparatively so small that it can be neglected. However, the Type 1617 can apply 600 V across the unknown, therefore across the $\mathrm{R}_{\mathrm{S}}-\mathrm{CS}_{S}$ arm, placing the guard point at a potential of 600 V , a rather undesirable situation.

To avoid this dangerous situation, a unity-gain amplifier is connected between this passive guard point and the actual guard terminal, G, as shown in Figure 5-6. The output of the amplifier is clamped to ground by a rectifier, so that G is never at a high potential,

Figure 506. The guard circuit with respect to the bridge.
even in case of an accidental short from the guard to the + UNKNOWN terminal.

The performance of the guard circuit is measured by its gain and output impedance. The capacitance from the + UNKNOWN terminal to $G\left(C_{A}\right)$ in effect shunts the unknown, but with a value reduced by a factor of $1-\mathrm{K}$. The gain, K , of the unity amplifier is approximately 0.999 , so that 1000 pF to GUARD is equivalent to approximately 1 pF across C_{X}. Capacitance from G to ground $\left(C_{B}\right)$ has no effect by itself, but it does reduce the effectiveness of the GUARD because of the limited output impedance of the amplifier. The effective capacitance shunting the unknown is approximately:

$$
C_{A}\left(1-K \frac{C_{o}}{C_{o}+C_{B}}\right) \approx C_{A}(1-K)+\frac{C_{A} C_{B}}{C_{o}}
$$

where C_{O} is the output capacitance of the guard circuit ($10 \mu \mathrm{~F}$).

The resistor in series with the guard protects the grounding rectifier from excessive current and has a lower impedance than the $10 \mu \mathrm{~F}$ output capacitor at 120 Hz .

A shorted GUARD terminal does not damage the guard circuit, but impairs the accuracy of the bridge.

5.3 THE INTERNAL GENERATOR.

The generator can be considered a selective filter operating on the rectified line voltage, or an oscillator synchronized to the line. The former is probably more accurate because the circuit would not oscillate when powered by a supply having low ripple.

The filter circuit is a simple Wien-bridge feedback arrangement, with two arms formed by the RC-Wien network, and the other two by the level-adjustment divider. The line voltage is full-wave rectified, to supply a signal rich in the $120-\mathrm{Hz}$ component, and the filter capacitor is purposefully small so that a great amount of this signal reaches the input stage by means of the bias resistor (R217).

The compound (Darlington) output stage drives the primary of the input transformer at a level of about 5 V , rms. This transformer isolates the generator circuit from the capacitance bridge, which may have 600 Vdc
applied to it. It also provides several output voltages by means of secondary taps selected by the GEN LEVEL switch.

5.4 INTERNAL DETECTOR.

The detector for this bridge is ungrounded and yet powered by the line, even though the bridge signal is a line harmonic. This makes the limitation of hum pickup both critical and difficult. Extensive shielding and guarding, both in the transformer and the leads, keeps the pickup negligible and controls the stray capacitances to ground.

The detector circuit is a straight-forward selectiveamplifier circuit. The input stage has a high input impedance to avoid loading the bridge on the lower ranges (when it presents a very high impedance to the detector). The selective stage is made "flat" by ungrounding the twin-T selective circuit, when the function switch is in the EXT GEN position. The output stages form an amplifier capable of high compression, accomplished by a diode network in the feedback voltage divider. This compression gives a "semi-logarithmic" characteristic to the meter response, allowing balances over a wide dynamic range without repeated adjustments of the DETECTOR SENSITIVITY potentiometer (R443). No connection to the detector output is available on the panel of the Type 1617 Capacitance Bridge because it is very rarely necessary. However, the use of a shielded transformer (GR Type 578-A or -B) connected to the detector board (Figure 5-7) will make this output readily usable if it is required.

Figure 5.7. Connections to the detector etched board to make the detector output available.

5.5 THE BIAS VOLTAGE SUPPLY.

The bias-voltage supply is connected in series with the input transformer and bridge as shown in Figure $5-8$, so that the full dc is applied to the capacitor being measured. The ac signal is applied to the bridge in series with the dc supply, which therefore must present a low ac impedance at its output to avoid a serious reduction of the ac voltage applied to the bridge when large capacitors are measured. This requirement is met by placing a capacitor at the output of the dc supply to present a low impedance to the ac signal. This capacitor must be able to charge to the full bias voltage. A dif-

Figure 5-8. The biasovoltage supply and its battery of bypass capacitors.
ferent capacitor, offering the lowest impedance at the required voltage, is switched in as the bias voltage range is changed (giving optimum conditions at all times).

The high-voltage supply itself is a series-regulator circuit, using a high-voltage vacumm tube as the series element and transistors for additional loop gain. The supply is adjustable both continuously and in steps. The continuous adjustment is accomplished with an adjustable reference sampled by one side of the differential input stage. The other input samples the voltage across a fixed resistor in series with the switched range resistors.

On the $2-V$ range, the sampling resistor (R214) is tied directly to ground and the adjustment span is set for 2 V , maximum, by means of R208. Thus, 1 mA flows in the sampling resistor for a full-scale setting. This condition is still met when resistors are placed between the sampling resistor and ground, making the maximum output voltage (in volts) for each range equal to the value of the total resistance (in kilohms) added, plus 2 V .

It should be noted that all the regulator circuitry may be off ground by the full bias voltage and, therefore, the bias should be set to a low voltage range when this circuit is to be serviced.

5.6 ORTHONULL. ${ }^{\circledR}$

Orthonull is a mechanical device that improves the bridge balance convergence when high-D capacitors are measured. Ordinarily, balances with such components are tedious and often impossible, due to the "sliding null" resulting from the interdependence of the two adjustments. Rapid balances are possible with Orthonull, which does not affect the electrical balance conditions but which does help avoid false nulls, improving bridge accuracy for high-D measurements. The unbalance voltage of the bridge, that is the voltage existing across the detector before balance is achieved, can be expressed as follows:

$$
E_{O}=E_{\text {in }} \frac{Z_{2} Z_{4} \cdot Z_{1} Z_{3}}{\left(Z_{1}+Z_{2}\right)\left(Z_{3}+Z_{4}\right)}=E_{\text {in }} \frac{Z_{2}-\frac{Z_{1} Z_{3}}{Z_{4}}}{\left(Z_{1}+Z_{2}\right)\left(1+\frac{Z_{3}}{Z_{4}}\right)}
$$

where $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are the impedances of the four arms.

For the bridge of Figure 5-1:

$$
E_{O}=\frac{R_{X}+\frac{1}{j \omega C_{x}}-\frac{R_{A} R_{S}}{R_{N}}+\frac{1}{j \omega C_{S} R_{N}}}{\text { Denominator }}
$$

We will assume that the denominator is more or less constant in the region of the null. The numerator is the difference between the unknown impedance $R_{X}+\frac{1}{j \omega C_{X}}$ and what can be called the "bridge impedance". The bridge output is proportional to this difference, which is the distance between them on the complete plane. To balance the bridge, the bridge impedance is varied by adjustment of R_{N} (the C dial) and R_{S} (the D dial), until it equals the unknown impedance. An adjustment of R_{S} varies only the real part of the bridge impedance, whereas the adjustment of R_{N} varies both parts, and is therefore a multiplier of the bridge impedance. Thus, adjustment of R_{S} moves the bridge impedance horizontally on the complex plane, while adjustment of R_{N} moves it radially (see Figure 5-9). Each control is adjusted for a minimum voltage.

Figure 5-9. Loci of R_{n} and R_{s} adjustments on the Z plane.

When $X \gg R$ (i.e., when D is low) these two adjustments are almost orthogonal, and rapid convergence is possible. When D is high, however, the adjustment becomes more parallel and convergence is slow, causing a "sliding null", as shown in Figure 5-10, where $\mathrm{D}=2$. With higher D's, convergence is even slower.

The Orthonull device makes the two adjustments orthogonal by nonreciprocally ganging R_{N} and R_{S}. From the equation, it is apparent that if R_{S} / R_{N} remained constant as R_{N} was varied, only the imaginary part of the bridge impedance would change. But when

Figure 5.10. Loci of "sliding null" balances.
R_{S} is adjusted, R_{N} must not move, to vary only the real part. The solution is a simple friction clutch to permit nonreciprocal action. Both the inherent difference in friction of the two rheostats and the pulley ratio favor torque transmission is the desired direction.

The ratio R_{S} / R_{N} must be constant for variation in R_{N} for any initial settings of R_{N} and R_{S}, since R_{S} may be moved independently of R_{N}. This requires rheostats with exponential characteristics (and logarithmic dials). The D rheostat is a $54-\mathrm{dB}$ exponential potentiometer. The C rheostat is exponential in the dial range from 1 to 11 , and linear below 1. Thus, for correct Orthonull action, the C dial must always be set in the range above 1 .

The advantage of Orthonull is illustrated in Figure 5-11, which is a plot of the number of adjustments necessary for a balance. Not only does the Orthonull reduce the number of balances, but it permits 1% measurements that would otherwise be impossible with D above 3 , due to the finite resolution of the D rheostat. This finite resolution causes the meter indication to vary in jumps when Orthonull is used at D's above 3. However, by selection of the best null, 1% accuracy is possible with D's of more than 5 and 20% with D's of 10 .

5.7 THREE-AND-FOUR-TERMINAL MEASUREMENTS.

5.7.1 GENERAL.

Stray impedances - the plague of precise metrology - are of two kinds: shunt and series impedances. Fortunately, in the case of capacitance measurements, they are rarely both important at the same time. The

Figure 5011. Number of adjustments to obtain balance versus D.
shunt impedances introduce error in low-capacitance measurements and are corrected by 3 -terminal measurements. The series impedances are important in the measurement of high capacitance (low impedance) and necessitate 4-terminal measurements.

5.7.2 THREE-TERMINAL MEASUREMENTS.

The shielding of a low-valued capacitor prevents the direct shunting of the unknown by a stray capacitance. However, the shield is, in effect, a third terminal and there may be appreciable capacitance from the terminals of the unknown to the shield (Figure 5-12).

Figure 5.12. Measurement of a capacitor C_{x} with a shielded lead and the resulting stray capacitances. The shield prevents stray capacitance from being set up directly across the unknown.

The object is to eliminate C_{A} and C_{B} from the direct measurements of C_{X}. This can be accomplished by measurement of short-circuit transfer admittance, I_{i}, of the circuit of Figure 5-13.
$\mathrm{E}_{\text {in }}$ If the source and the ammeter have zero impedance, the measurement is independent of C_{A} and C_{B} and:

$$
y_{21}=I_{o} / E_{i n}=j \omega C_{x}
$$

The Type 1617 Capacitance Bridge uses an active guard circuit to achieve the same result (refer to paragraph 5.2)。

Figure 5-13. Elimination of the effect of the stray capacitances C_{A} and C_{B} by a short. circuit transfer-admittance measurement.

5.7.3 FOUR-TERMINAL MEASUREMENTS.

A high-valued capacitor is little affected by a shunt stray capacitance but, because of its low impedance, it is very much affected by a series stray impedance (such as lead resistance). Here, a measurement of transfer impedance, $\frac{E_{\Omega}}{I_{\text {in }}}$, will eliminate the effect of the leads (Figure 5-14) if both the source and the voltmeter have infinite impedances; $\frac{E_{0}}{I_{i n}}=Z_{21}$ is exactly the impedance from A to A_{1}, i.e., $\frac{1}{\mathrm{~J} \omega \mathrm{C}_{\mathrm{x}}}$. This method shows quite clearly why in a 4-terminal component, two terminals ($\mathrm{C}, \mathrm{C}^{*}$) are usually labelled the "current" terminals and two, ($\mathrm{P}, \mathrm{P}^{8}$) the "potential" terminals.

The Type 1617 uses a similar, if not exactly identical method of measurement. Its two outer connectors can be considered "current terminals" and the inner connectors "potential terminals".

It is interesting to note that there are some applications where both series and shunt stray impedances affect the unknown enough to require that both 3- and 4-terminal techniques be used at the same time. Examples are: very high precision measurements on standard capacitors of medium value, 1 high-frequency measurements on capacitors and measurements on remotely located components (refer to paragraph 4.5.1).

Figure 5-14. Elimination of the lead impedance by a transfer-impedance measurement.

[^3]

Figure 5-15. Simplified schematic of Type 1617 Capacitance Bridge showing three measurement modes: null, voltage, and current.

5.8 GENERAL.

The interrelationship of the several circuits that make up the Type 1617 Capacitance Bridge will become
more apparent by reference to Figure $5-15$, a simplified schematic description of the complete instrument. Comprehensive circuit details are presented in the full schematic drawings shown in Section 6.

Service and Maintenance-Section 6

WARNING

High voltages, constituting potentially lethal shock hazards, exist in the circuitry inside the case of this bridge.

If troubleshooting is necessary, it should be performed by qualified personnel familiar with the hazards inherent in high-voltage circuits.

6.1 WARRANTY.

We warrant that each new instrument manufactured and sold by us is free from defects in material and workmanship, and that, properly used, it will perform in full accordance with applicable specifications.

6.2 SERVICE.

The warranty stated above attests the quality of materials and workmanship in our products. When difficulties do occur, our service engineers will assist in any way possible. If the difficulty cannot be eliminated by use of the following service instructions, please write or phone our Service Department (see rear cover), giving full information of the trouble and of steps taken to remedy it. Be sure to mention the serial and type numbers of the instrument.

Before returning an instrument to General Radio for service, please write to our Service Department or nearest District Office, requesting a "Returned Material Tag". Use of this tag will ensure proper handling and identification. For instruments not covered by the warranty, a purchase order should be forwarded to avoid unnecessary delay.

6.3 TROUBLE ANALYSIS.

6.3.1 PRELIMINARY CHECKS.

If satisfactory balances are difficult or impossible to obtain, make the following external checks first.

1. Is the instrument connected to the line?
2. Is the power on?
3. Is the unknown connected correctly?
4. Are all the panel controls set properly?
5. Are all the shorting links in place? For 2- and 3-terminal measurements, link the two positive terminals and link the two negative terminals. The link on the EXT BIAS terminals should always be connected if the terminals are not in use.
6. Is the unknown what it is thought to be? Try measuring a known component.
7. Is the D so high that Orthonull should be used?
8. Is the SENSITIVITY control on?

6.3.2 TROUBLE ANALYSIS.

The Type 1617 Capacitance Bridge is self-contained and incorporates six major circuits, the generator, the detector, the guard and trigger, the bias supply, the meter and the bridge; one or several of these may become defective.

A component is connected and balance is attempted.

1. NOISY OR ERRATIC BALANCE. This may be due to surface contamination of the wirewound C and D control rheostats. Contamination can form if the bridge is left idle for an extended period and can be eliminated by rotating the controls several times.

2. WRONG VOLTAGE INDICATION.

If the bias was applied and it appears that a wrong result is obtained, a d-c voltmeter across the unknown will read the actual value of the dc bias applied. If this is not what was intended, or shown by the meter, the internal supply is faulty, proceed to paragraph 6.4.3 (see also paragraph 3.4).
3. CAPACITANCE MEASUREMENT ERROR. If the measurement was guarded (3-terminal) and it appears that the guard does not accomplish its purpose, proceed to paragraph 6.4.4. The proper functioning of the guard when measuring a small capacitor $(<0.01 \mu \mathrm{~F})$ is checked by connecting a capacitor (around 1000 pF) from the guard to the positive terminal. If the reading is not appreciably changed, the guard is operative. Loss of proper guard action can cause errors in the highest as well as the lowest C ranges. Check guard if error appears on those ranges (see above).

Finally, if the balance obtained is known to be erroneous, some bridge circuit component is faulty, (refer to paragraph 6.4.6).
4. NO DEFLECTION. A process of elimination will localize the trouble.
a. Connect an external generator (120 Hz giving $5 \mathrm{~V}, \mathrm{rms}$); the Types 1310 or 1311 oscillators are well suited for the purpose. If balance is obtainable, the internal generator is faulty (refer to paragraph 6.4.1). If nothing happens, proceed below.
b. Detector and Meter Check - Keep the external generator connected and set controls as follows:

MULTIPLIER switch to 100 pF .
C Dial to 10 .
D Dial to 1.
GEN LEVEL MAX VOLTS to 0.2.
DETECTOR SENSITIVITY fully clockwise.
c. Disconnect the link at the two positive UNKNOWN terminals, thus isolating the detector input and connect an oscillator between AT401* and AT402. A signal from this oscillator of approximately 0.5 V at 120 Hz should drive the meter full scale. This meter should peak at $120 \mathrm{~Hz} \pm 2 \%$.

If the check is negative, either the detector or the meter is faulty. Connect an external indicator (earphones, scope . . .) to the detector output (refer to paragraph 5.4 and Figure 5-7) and again look for this signal. If it is there, the meter is faulty; if it is not the detector is to be repaired. Proceed to paragraph 6.4.2.

[^4]5. EXCESSIVE DISCHARGE TIME. On the highvoltage ranges, high-capacitance ranges, and combinations of high capacitance/high voltage, where lethal charges may be present at the UNKNOWN terminals, the circuit is designed so as to discharge the capacitor being measured very quickly. Therefore, when the BIAS CHARGE-DISCHARGE control is switched to DISCHARGE, the CAPACITOR CHARGED lamp should go out almost immediately.

When measuring high-value capacitors at low volttage, it may take up to several seconds to drop the bias voltage below 1 volt and therefore have the lamp go out, but this is not a dangerous condition.

If the time required for discharge is excessive, it may indicate a burned-out discharge resistor (R178 through R181), or a faulty discharge switch (S106).

6.4 DETAIL TROUBLE ANALYSIS (Figure 6-1).

6.4.1 GENERATOR.

Set the function switch to INT 120 C , the MULTIPLIER switch to $1 \mu \mathrm{~F}$, and connect a scope across R115 (on switch S102). The waveform (120 Hz) should be free of distortion and have an amplitude equal to the setting of the GEN LEVEL MAX VOLTS switch (S105). If the level is incorrect adjust R222. (Too high a level causes waveform distortion). If some, but not all three, voltages are obtained, check switch S105 for proper contact and check the secondary taps of T101 for open-circuit indications. If the correct ac output cannot be obtained, check the dc levels within the generator circuit (Table 6-6) and the ac voltages at transformer output T501 (Table 6-1).

Transformer Secondary Voltages (T501)	
With 115 V Into The Primary	
(Figures 6-2 and 6-10)	
Pins	
5.6	Voltage (rms)
7.8	9.6 V
8.9	4.8 V
10.11	15.3 V
11.12	110 V
13.14	155 V
14.15	110 V
17.18	6.0 V
	15.0 V

6.4.2 DETECTOR.

With 0.5 mV applied (paragraph 6.3.2), Table 6-2 shows typical waveforms and amplitudes. Check the dc voltages as in Table 6-6.

Figure 6-1. Front view of the Type 1617 Capacitance Bridge.

Waveforms in the Detector Circuit	
(Figure 6-2)	
AT403	$\sim 0.04 \mathrm{~V}$
Coll., Q405	$\sim 0.02 \mathrm{~V}$
Emitt., Q407	$\sim 0.8 \mathrm{~V}$
Coll., Q408	$\sim 2.5 \mathrm{~V}$
AT408	$\sim 0.4 \mathrm{~V}$

6.4.3 INTERNAL BIAS SUPPLY.

To check the internal bias supply:
a. If the measured voltage is correct on all ranges but the indication of the Type 1617 meter differs from the measured value -

Adjust R183 (VOLTAGE RANGE switch on 2 V).
Check the meter-range resistors (R158 through R163) for proper value (on second deck of S103).
b. If the measured voltage is wrong on only some ranges, check the values of the resistors of the first deck of S103 and the switch contacts associated with these resistors.

c. The highest voltage in each range is not equal to the value indicated on the switch legend - adjust R208. If not sufficient, check all de levels as in Table 6-6.
d. If the dc bias voltage varies with line voltage, check the 7239 tube and the transistors of the circuit (Table 6-6).

Figure 6-2. Rear interior view of the Type 1617 Capacitance Bridge.

6.4.4 GUARD CIRCUIT.

Observe that:
a. The shield around the positive UNKNOWN terminals, and all the shielded cables from UNKNOWN and GUARD terminals are properly guarded.
b. The lead connecting the unknown to the positive terminal is properly shielded.
c. The guard-circuit amplifier is functioning. To do this, set the function switch to INT 120C, the MULTIPLIER switch to $1 \mu \mathrm{~F}$, the C dial to 0 , and switch the bias off. Then the ac voltage measured between the GUARD terminal and ground should be the same as that measured from the positive unknown terminal to ground.

A negative check is caused by a faulty amplifier or some shorted guard point. To find out if the amplifier is operating, check the guard output at AT307, with the white-yellow-brown lead disconnected. If the amplifier is not functioning properly check the dc voltages in Table 6-6.

6.4.5 TRIGGER.

The trigger circuit should operate so that it fires the CAPACITOR CHARGED lamp when a bias of 0.5 to 1.0 volt is applied to the UNKNOWN TERMINALS. Check the dc voltages if it does not (Table 6-6).

6.4.6 BRIDGE.

For an unknown ($\mathrm{R}_{\mathrm{x}}+\mathrm{CC} \mathrm{C}_{\mathrm{x}}^{1}$, the balance equations of the bridge are:

$$
R_{x}=\frac{R_{A}}{R_{N}} R_{S} \text { and } C_{x}=\frac{R_{N}}{R_{A}} C_{S}
$$

where R_{A} and C_{S} are fixed components.
R_{N} and R_{S} are rheostats (C and D dials) and all four components have to be within tolerance.

Check the calibration of the bridge by making the measurements of Table 6-3. Six standard capacitors are shown although any range can be checked using any capacitor of known value which falls within that range. Suitable capacitors include the Type 1409 Standard Capacitor, Type 1423-A Precision Decade Capacitor, and Type 1424-A and 1425-A Standard Decade Capacitors.

If large standard capacitors are not available, the higher capacitance ranges may be checked by direct measurement of the ratio-arm resistors, for these are the only components in the bridge that change with the range. These resistors (R 103 through R112) may be measured with a dc bridge. A Kelvin, four-terminal bridge is necessary for the two highest ranges, and preferable for the next two lower ones, to avoid errors due to lead resistance.

Table 6-3

Bridge Calibration Check					
Measurement	Standard Value	Connection No Terminals	$\begin{aligned} & \text { MULTIPLIER } \\ & \text { setting } \end{aligned}$	$\begin{aligned} & C \text { setting } \\ & \pm 1 \% \end{aligned}$	F aulty R_{A}
a	100 pF	3*	100 pF	1	R112
b	10 MF	3	1 nF	10	R111
c	10 nF	3	10 nF	1	R110
d	$1 \mu \mathrm{~F}$	3	100 nF	10	R109
e	$1 \mu \mathrm{~F}$	3	$1 \mu \mathrm{~F}$	1	R108
f	$100 \mu \mathrm{~F}$	4**	$10 \mu \mathrm{~F}$	10	R107
g	$100 \mu \mathrm{~F}$	4	$100 \mu \mathrm{~F}$	1	R106
h	$100 \mu \mathrm{~F}$	4	1 mF	0.1	R105
i	10 mF	4	1 mF	10	R 105
j	10 mF	4	10 mF	1	R104
k	100 mF	4	100 mF	1	R103
*three-terminal measurement (two-lead cable) **four-terminal measurement (three-lead cable).					

The main circuit diagram, Figure $6-13$, indicates the terminals on S101 that should be used for connection. (The highest capacitance range uses the lowestvalued resistors e.g., R103.) The four highest ranges use a four-terminal connection in the bridge. Each resistor should be within 0.25% of its nominal value. The range switch should be set to a range other than that being measured to avoid error. The side pan of the instrument will have to be removed for access to the higher-value units.

The results of the measurements in Table 6-3 indicate:

1. When only one measurement is in error the corresponding faulty component is listed in Table 6-3.
2. When all measurements at either 1 or 10 on the C dial are in error, the C rheostat is in error at 1 or 10 .
3. When all measurements are in error by the same percentage (value), the standard capacitor (C101) is faulty.
4. When measurements are in error by the same arc of displacement, whether at 0.1 or 10 on the C dial (measurement f and h), the dial has slipped and is easily realigned.
5. When all measurements and all fixed components of the bridge are within tolerance, if the C rheostat is correct on the 1 and 10 setting, it may still be incorrect between 1 and 10 (refer to paragraph 6.5.2).

6.5 CALIBRATION PROCEDURE.

The few internal adjustments are factory set and normally do not require readjustment. Procedures for recalibration are included here but should be used only when the operator is reasonably certain that it is necessary.

6.5.1 GENERAL.

An impedance bridge with an accuracy of 0.25% or better is necessary; the Types 1608 and 1656 Impedance Bridges can be used.

If the trouble is narrowed to the ratio arm resistors $\left(R_{A}\right)$ or the standard capacitor, ascertain that they are within tolerances ($\pm 0.25 \%$ for $\mathrm{R}_{\mathrm{A}}, \pm 0.25 \%$ for C_{S}); change any defective unit.

The C rheo stat can be recalibrated (paragraph 6.5.3); the D rheostat is fixed and only slipping of the dial can be corrected (paragraph 6.5.3); finally the orthonull operation can be checked (paragraph 6.5.4).

6.5.2 C CALIBRATION.

If it has been found that the C rheostat is faulty, it can be readjusted by means of its justifying mechanism. Two methods can be used to do so.

Direct Resistance Measurement. The C rheostat mechanical justifying mechanism consists of eight cam screws located on the rear of the C rheostat (see Figure $6-2$), numbered from 1 to 8 in a clockwise direction from the slit on the cam plate. They can be adjusted by setting them for the proper resistances as indicated in Table 6-4. To reach the rheostat, remove two screws on each side of the inner plates, unsolder the connecting wire, and swing down the battery of capacitors.

NOTE

If these cam screws seem to be completely out of adjustment, preset cam screw 1 four turns from fully clockwise and preset the remaining screws two turns from fully clockwise, before attempting the adjustment procedure.

Table 6-4
C Dial Calibration Adjustments
(Figure 6-2)

Dial Reading	Resistance* Ohms	(Figure 6-2) Tolerance	Adjust Cam Screut
0.1	200	190 to $210 \pm 1 / 4$ division	1
0.6	1,200	1190 to $1210 \pm 1 / 4$ division	2
1.3	2,600	2574 to $2626(+1 / 2 \%)$	3
2,2	4,400	4356 to $4444(\pm 1 / 2 \%)$	4
3.6	7,200	7128 to $7272(\pm 1 / 2 \%)$	5
5.5	11,000	10,890 to $11,110(\pm 1 / 2 \%)$	6
8.0	16,000	15,840 to $16,160(\pm 1 / 2 \%)$	7
11.0	22,000	21,780 to $22,220(\pm 1 / 2 \%)$	8

If, after adjustment, the cam plate is too high or too low, reposition the C dial on its shaft and repeat the cam-screw adjustment procedure.

Adjustment From A Measurement. A somewhat easier method (because it does not require a resistance bridge) consists in connecting a variable capacitor (like the GR 1423 or 1413 Precision Capacitors) to the bridge, and making the balance setting of the C dial and the known value of C, agree by adjustment of the proper cam screw.

Proceed as follows:
a. Connect the variable standard of value S to the bridge UNKNOWN TERMINALS.
b. Set the MULTIPLIER on (M) and the C Dial on (C), so as to have $S=(M) \times(C)$
c. Balance the bridge with the D dial and the cam screw (s) closest to the rheostat arm.
d. Change S and C and repeat the procedure until all cam screws are adjusted.

NOTE

It is advantageous to choose the settings of the C dial given in Table 6-4, because the cam screw to be adjusted is then directly under the rheostat arm.

6.5.3 D DIAL CHECK.

To check the calibration of the D dial proceed as follows:
a. Set the MULTIPLIER switch to 100 nF .
b. Set the C dial on 5 .
c. Connect to the bridge a $1.0 \mu \mathrm{~F}$ Standard Capacitor*, such as GR 1409 in series with a decade resistance box, such as a GR 1433 (Figure 6-3).

Figure 6.3. Connections for R and C in the D.dial check.
d. Set the resistance according to Table 6-5 and observe that the bridge balances for the corresponding D setting.

If the first and last measurements are in error by the same arc or displacement of the dial, then the dial has slipped. If the errors are random, the rheostat is faulty (it cannot be adjusted and has to be changed).

Table 6-5
Resistance Settings for D Check When $\mathrm{C}=1 \mu \mathrm{~F}$ D* Resistance Setting
Setting $\quad 100 \mathrm{~Hz} \quad 120 \mathrm{~Hz}$
$0.1 \quad 159 \Omega \quad 133 \Omega$
$1.592 \mathrm{k} \Omega \quad 1.326 \mathrm{k} \Omega$
$4.775 \mathrm{k} \Omega \quad 3.979 \mathrm{k} \Omega$
$7.958 \mathrm{k} \Omega \quad 6.631 \mathrm{k} \Omega$
10
$15.92 \mathrm{k} \Omega$
$13.26 \mathrm{k} \Omega$
*Specified accuracy $\pm .001 \pm 2 \%$

6.5.4 ORTHONULL OPERATION.

With the lever in the NORMAL position, the C and D dials must operate independently of each other.

With the lever in the ORTHONULL position, the C dial must move the D dial but the D dial must not move the C dial; if performance is different and -

1. D dial moves C dial:

ORTHONULL lever-spring tension is excessive. Turn the nut on the spade-lug counterclockwise to reduce tension.

2. C dial doesn't move D dial:

a. ORTHONULL lever-spring tension is insufficient. Turn the nut on the spade-lug clockwise to increase tension.
b. Lever spring is broken or otherwise defective.
c. Drive cable between C dial and D dial is broken or off the pulley.

[^5]Replace the ORTHONULL drive cable as follows (see Figure 6-4):
a. Insert the cable ends through slots 1 and 2 of the D pulley and attach the eyelets to the springs.

NOTE
The cable is attached only to the D pulley at this time.

Figure 6-4. Replacement of the Orthonull drive cable.
b. Pull the cable until the eyelets are visible through holes A and B. Insert a pin or small nail through the holes into the respective cable eyelet and release the cable. The pins hold the springs expanded to allow the cable to be threaded around the C pulley.
c. Set the C dial to 1.8 . Thread the cable from slot 1 , around the D pully in the groove nearest the panel and then around the C dial in the second groove from the panel.
d. Continue the cable around the C pulley until it emerges from the third groove from the panel and return it to the D dial.
e. The cable is now completely threaded and the pins can be removed from holes A and B.

6.6 FLIP-TILT CABINET.

Figure 6-5 shows the operation of the flip-tilt cabinet and Figure 6-6 shows details of the pivoting part of the flip-tilt.

TO OPEN

PRESS HANDLE DOWN AS FAR AS POSSIBLE

FLIP INSTRUMENT OVER AND HOLD
AT DESIRED TILT
LET HANDLE UP
Figure 6.5. Operation of the flip-tilt cabinet.

6.7 REPAIR AND REPLACEMENT.

Defective parts indicated by the trouble-analysis procedures should be repaired or replaced. As an aid in the location of detail parts on the bridge, the etchedcircuit boards used are shown in Figures 6-7, 6-8 and $6-10$. Figures $6-9,6-11$ and $6-13$ contain the complete wiring schematic drawings for the instrument. Figure $6-12$ is a switch wiring diagram for front-panel controls.

Reference designators used in all the figures are the same as those used in the parts list that follows.

6.8 MINIMUM PERFORMANCE STANDARDS

The following procedures for checking capacitance and dissipation-factor measurement accuracy of the GR 1617 are recommended for acceptance and periodic tests. There are four basic tests:

1. Capacitance Dial Calibration (see 6.8.2).
2. Capacitance-Range Accuracy (see 6.8.3).
3. Dissipation-Factor Dial Calibration (see 6.8.4).
4. Dissipation-Factor Accuracy On All Ranges (see 6.8.5).

6.8.1 EQUIPMENT REQUIRED

To make the recommended tests the following equipment is necessary:

1. A capacitance decade with range of $1 \mu \mathrm{~F}$ in steps of $.01 \mu \mathrm{~F}$ and accuracy of 0.1% or better.
2. A resistance decade with a range of $100 \mathrm{k} \Omega$, steps of 1Ω, and accuracy of 0.1% or better.
3. Capacitance standards or decades with values from 100 pF to 1 F with accuracy of $1 / 4 \%$ or better.

Table 6-7 lists recommended equipment which is fully specified in the appendix.

6.8.2 CAPACITANCE-DIAL CALIBRATION

Set the 1617 MULTIPLIER switch to the x 100 nF range and connect the decade capacitor. If the GR 1413 is used, the shield of the high terminal should be connected to the 1617 GUARD terminal. A GR 1423 can be used

Table 6-6
DC Voltages
Test Conditions:

$$
\begin{array}{l}\text { GEN LEVEL MAX VOLTS }=0.5 \\ \text { INT. 120 C GEN NORM } \\ \text { BIAS VOLTAGE RANGE }=2 \mathrm{~V} \\ \text { LEAKAGE CURRENT RANGE }=60 \mu \mathrm{~A} \\ \\ \text { BIAS CHARGE switch on } \\ \\ \text { BIAS ADJ control fully CW } \\ \\ \text { DETECTOR SENS control fully CCW } \\ \\ \text { MULTIPLIER }=1 \mu \mathrm{~F} \\ \\ \text { C DIAL }=0 \\ \\ \text { D DIAL }=0 \\ \\ \text { J } 101 \text { tied to J102, J } 103 \text { tied to } \mathrm{J} 104\end{array}
$$

Guard Amplifier (Figures 6-8 and 6-9)

	Emitter	Collector
Q301	8.75 V	12.7 V
Q302	12.7 V	17.8 V
Q303	18.2 V	8.95 V

Positive side of C307 18.2
AT310 2 V
AT305 0 V
Trigger (Figures 6-8 and 6-9)

All voltages to chassis ground unless otherwise stated.
High Voltage Supply (Figures 6-7 and 6-9)
V201
Pin \#1 -5.80 V
Pin \#2 2.35 V
Pin \#6 92.0 V
AT205 2V
AT205 to AT206 2 V on all ranges

	Emitter	Collector
Q201	-11.0 V	-5.80 V
Q202	0.645 V	-11.0 V
Q203	0.645 V	-10.5 V

AT207	0.007 V	AT211	-18.2
AT208	0.007 V	AT301	142 V
AT209	-15.5	AT303	142 V
AT210	-15.5	AT304	300 V

Generator (Figures 6-7 and 6-9)

	Emitter	Collector
Q204	1.20 V	8.35 V
Q205	8.50 V	0.910 V
Q212	8.70 V	0.910 V

AT201	4.5 V	AT203	0.62 V
AT202	4.5 V	AT204	-0.003

	Emitter	Collector
Q304	0 V	0.025 V
Q305	0.480 V	0 V
Q306	0.830 V	0 V
AT306	-1.9 V	
AT307	-0.25 V	
AT308	-0.007 V	

Detector (Figures 6-10 and 6.11)
All transistor voltages are to detector low (AT402)

	Emitter	Collector
Q401	0.250 V	3.60 V
Q402	3.00 V	7.80 V
Q403	7.60 V	13.3 V
Q404	5.85 V	13.2 V
Q405	13.3 V	10.0 V
Q406	10.1 V	6.40 V
Q407	5.70 V	12.6 V
Q408	12.7 V	6.10 V
Q409	19.0 V	15.7 V
Q410	9.35 V	18.8 V
AT401 through AT405	1.9 V	
AT407	1.9 V	
AT408	2 V	
AT409		1.9 V
AT410	1.4 V	
AT411, 412	-0.28 V	
positive side of C407	15.9 V	

two-terminal (LOW terminal tied to case). Measure various values between .01 and $1 \mu \mathrm{~F}$ and all should be within $\pm 1 \%$ or $\pm 1000 \mathrm{pF}$.

If any measurements are out of tolerance, refer to para 6.5.1 and 6.5.2.

6.8.3 CAPACITANCE-RANGE ACCURACY

To check all ranges of the 1617 , capacitance standards from 1000 pF to 100 mF are required. Suggested standards are given in Table 6-7.

A decade box is suggested for values up to $1 \mu \mathrm{~F}$. If a GR 1413 is used, the shield of the HIGH terminal should be connected to the 1617 GUARD terminal. A GR 1423 can be used with a two-terminal connection (LOW tied to case). The shielded lead set ($\mathrm{P} / \mathrm{N} 1617-2200$) should be used for low values.

To check the lowest range of the 1617 , first measure the "zero" capacitance of the bridge, standard, and lead arrangement. For the GR 1413 this can be done by setting the 1413 to zero value and making a measurement obtain-

Equipment for Minimum Performance Test	
Equipment	Recommended
Decade Capacitor	GR 1423 or GR 1413
Decade Resistor	GR 1433-M (or X, B, F, G or H) GR 1434-M (or B, X or G)
Standard 100 pF to $1 \mu \mathrm{~F}$	GR 1423 or GR 1413 Capacitance Decade
Standard $1 \mu \mathrm{~F}$ to 1 F	GR 1417 or GR 1426

See Appendix for full specifications
ing C_{0}. For the GR 1423 , disconnect the high lead, support it at least an inch away from the 1423 panel, and make a measurement of C_{0}. Then set the decade box to a value of 1000 pF and make a second measurement, C_{1}. The value of $\mathrm{C}_{1}-\mathrm{C}_{0}$ should be within $1000 \mathrm{pF} \pm 1 \%$.

The same zero connection should be used if the next range is checked at $1 / 10 \Omega$ full scale (1000 pF) but has almost negligible effect at full scale ($10 \mu \mathrm{~F}$).

The higher ranges of the 1617 require high-valued standards such as the GR 1426 or GR 1417 The fourterminal lead set (P/N 1617-2210) should be used (and the shorting links on the 1617 terminals disconnected). For very high values, it is preferable to tightly twist together the two inner leads to reduce mutual inductance (see para 3.1.5).

The connections to the 1426 are between corresponding terminals. The connec-

Test Connections		
	1417 Connections	
1617 Terminal	" ${ }^{\text {a }}$	"B"
- UNKNOWN (outside)	+ POTENTIAL	- CURRENT
- UNKNOWN (inside)	+ CURRENT	- POTENTIAL
+ UNKNOWN (inside)	- CURRENT	+ POTENTIAL
+ UNKNOWN (outside)	- POTENTIAL	+ CURRENT

tion to the 1417 depends on the 1617 range as shown in Table 6-9. The two connections, A and B, are given in Table 6-8.

The accuracy of both the 1426 or the 1417 can be checked by determining the value at the $1 \mu \mathrm{~F}$ setting. This can be done, using the 1617 , by first measuring the 1426 or 1417 and then, leaving the 1617 C dial untouched, rebalance the 1617 with a precision decade capacitor connected, using only the decade's adjustment and the 1617 D dial. The indicated value of the decade capacitor should be $1 \mu \mathrm{~F}$, within $1 / 4 \%$.

The accuracy of the 1617 calibration can be improved by using the value of the 1426 or 1417 at $1 \mu \mathrm{~F}$, as determined above, as the nominal value at higher settings (when multiplied by the appropriate factor of 10).

6.8.4 DISSIPATION-FACTOR DIAL.

The D dial of the 1617 can be checked by connecting a series combination of a decade resistor and a $1 \mu \mathrm{~F}$ capacitor to the 1617 and making bridge balances at various

CALIBRATION WITH 1417							
1417 Setting	1617 Multiplier	Connection	Gen Level(V)	$\begin{aligned} & \text { Nom } \\ & \text { C Read. } \end{aligned}$	$\begin{gathered} c \\ \text { Tol. } \end{gathered}$	$\begin{gathered} \text { D } \\ \text { Nominal } \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ \text { Tol. } \end{gathered}$
$1 \mu \mathrm{~F}$	100 nF	A or B	2.0	10	$\pm 1 \%$. 01	$\pm .001$
$1 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	A or B	2.0	1	$\pm 1 \%$. 01	$\pm .001$
$10 \mu \mathrm{~F}$	$1 \mu \mathrm{~F}$	A	2.0	10	$\pm 1 \%$. 008	$\pm .001$
$10 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	A	0.5	1	$\pm 1 \%$. 008	$\pm .001$
$100 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$	A	0.5	10	$\pm 1 \%$. 009	$\pm .001$
$100 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$	A	0.2	1	$\pm 1 \%$. 009	$\pm .001$
1 mF	$100 \mu \mathrm{~F}$	B	0.2	10	$\pm 1 \%$. 01	$\pm .001$
1 mF	. 1 mF	B	0.2	1	$\pm 1 \%$	--	
10 mF	1 mF	B	0.2	10	$\pm 1 \%$. 01	$\pm .0011$
10 mF	10 mF	B	0.2	1	$\pm 1 \%$	--	
100 mF	10 mF	B	0.2	10	$\pm 1 \%$. 01	$\pm .002$
100 mF	100 mF	B	0.2	1	$\pm 2 \%$	--	
1 F	100 mF	B	0.5	10	$\pm 2 \%$. 01	$\pm .011$

NOTES (1) Use 1417 frequency setting corresponding to test frequency.
(2) Make two measurements with 1617 input reversed and take average.
(3) Twist leads at high C values (See para 3.1.5.)
resistance settings. The D dial should read $2 \pi f R C$, to within the D -accuracy specification where R is the resistance of the decade resistor, C is $1 \mu \mathrm{~F}$, and f is the test frequency in Hz . Suggested resistance settings and the resulting D readings are given in Table 6-5.

6.8.5 DISSIPATION-FACTOR ACCURACY.

The dissipation factor can be checked on various ranges by using series $\mathrm{R}-\mathrm{C}$ combinations as described above. Only one check for each range is required to ensure that the bridge range resistor (ratio-arm) is not introducing phase shift and hence D error. This check should be made at a low D value for greatest resolution.

Some care must be used when checking the lowest capacitance range, for stray capacitance can cause an appreciable D error. It is preferable to the fixed resistors of known value.

The D accuracy of the higher capacitance ranges can be checked with the GR 1417 four-terminal capacitance standard. The D value that should be read on the 1617 at balance (within the 1617 tolerance) is given in Table 6-9 as the nominal D value. At higher capacitance values, this check should be made only when the capacitance dial is balanced near full scale, because the lead resistance of the 1417 causes excessive D errors at lower settings. Use precautions noted at the bottom of Table 6-9.

6.9 KNOB REMOVAL.

If it should be necessary to remove the knob on a front-panel control, either to replace one that has been damaged or to replace the associated control, proceed as follows:
a. Grasp the knob firmly with the fingers and pull the knob straight away from the panel.

CAUTION

> Do not pull on the dial to remove a dial/ knob assembly. Always remove the knob first.
b. Observe the position of the set screw in the bushing, with respect to any panel marking (or at the full ccw position of a continuous control).
c. Release the set screw and pull the bushing off the shaft.
d. Remove and retain the black Nylon thrust washer, behind the dial/knob assembly, as appropriate.

NOTE

To separate the bushing from the knob, if for any reason they should be combined off the instrument, drive a machine tap a turn or two into the bushing for a sufficient grip for easy separation.

6. 10 KNOB INSTALLATION.

To install a knob assembly on the control shaft:
a. Place the black Nylon thrust washer over the control shaft, if appropriate.
b. Mount the bushing on the shaft, using a small slotted piece of wrapping paper as a shim for adequate panel clearance.
c. Orient the set screw on the bushing with respect to the panel-marking index and lock the set screw.

NOTE

Make sure that the end of the shaft does not protrude through the bushing or the knob won't set properly.
d. Place the knob on the bushing with the retention spring opposite the set screw.
e. Push the knob in until it bottoms and pull it slightly to check that the retention spring is seated in in the groove in the bushing.

NOTE

If the retention spring in the knob comes loose, reinstall it in the interior notch with the small slit in the outer wall.

6.11 METER WINDOW CARE

The clear acrylic meter window can become susceptible to electrostatic-charge buildup and can be scratched, if improperly cleaned.

It is treated inside and out in manufacturing with a special non-abrasive anti-static solution, Statnul, which normally should preclude any interference in meter operation caused by electrostatic effects. The problem is evidenced by the inability of the meter movement to return promptly to a zero reading, once it is deenergized. As supplied by General Radio, the meter should return to zero reading within 30 seconds, immediately following the placement of a static charge, as by rubbing the outside surface. This meets the requirements of ANSI standard C39.11972.

If static-charge problems occur, possibly as the result of frequent cleaning, the window should be carefully polished with a soft dry cloth, such as cheesecloth or nylon chiffon. Then, a coating of Statnul should be applied with the polishing cloth.

CAUTION

Do not use any kind of solvent. Kleenex or paper towels can scratch the window surface.

If it should be necessary to place limit marks on the meter window, paper-based masking tape is recommended, rather than any kind of marking pen, which could be abrasive or react chemically with the acrylic.

HIGH VOLTAGE SUPPLY \& GENERATOR PRINTED CIRCUIT BOARD 160 HZI P/N 1617-2720

HIGH VQLTAGE SUPPLY \& GENERATOR PRINTED CIRCUIT BOARD (50 HZ) P/N 1617-2780 COMPONENTS ARE IDENTICAL TO THE 1617-2720 COMPQNENTS EXCEPT FOR THE FOLLOWING

REFDES			DESCRIPTIDN				PART	NO.	FMC	MFGR	PART	NUMBER	
234	CAP	MYL AR	. 121 UF	2	PCT	100 V	4860	O8	56289	410 P	0.121	UF	2 PCT
205	CAP	MYLAR	121 UF	2	PCT	100V	4860	08	56289	4100	0.121	UF	2 PC T

GUARD AMPLIFIER \& TRIGGER PRINTED CIRCUIT BOARD
P/N 1617-2730

PART NO.	FMC	MFGR PART NUMBER
4450-6175	56289	$300405 \mathrm{G475}$
4450-6175	56289	300405G475
4860-9501	24655	4860-9501
4450-3600	56289	300406 G006
4450-3700	56289	$300156 G 015$
4405-2479	72982	$080108225 \cup 004722$
4450-3600	56289	300406G006
4450-2900	56289	300606G025
4450-2900	56289	300606G025
4450-3800	56289	300106G025
4409-3479	72982	$385108725 V 004732$
6081-1004	14433	1N4006
6081-1004	14433	1 N4006
6081-1004	14433	$1 N 4006$
6081-1004	14433	$1 N 4006$
6081-1001	14433	1 N4003
6081-1001	14433	1 N4003
6082-1016	14433	1N645
6082-1016	14433	1 N645
6082-1016	14433	1N645
8210-1290	56289	$2 N 3414$
8210-1290	56289	2N3414
8210-1106	01295	2N3702
8210-1037	04713	2N910
8210-1106	01295	2N3702
8210-1106	01295	2N3702
6100-4225	81349	RCR 20G224J
6100-4155	81349	RCR20G154J
6100-3475	81349	RCR20G473J
6100-4105	81349	RCR20G104J
6100-3105	81349	RCR20G103J
6100-2475	81349	RCR20G472J
6100-2105	81349	RCR20G102J
6100-2105	81349	RCR2OG102J
6100-5105	81349	RCR20G105J
6100-4335	81349	RCR20G334J
6100-2105	81349	RCR2OG102J
6760-9109	75042	BWH 1 OHM 1OPCT
6660-1105	75042	AS-5 100 OHM 5PCT
6100-4105	81349	RCR20G104J
6110-5109	81349	RCR32G105K
6110-5109	81349	RCR32G105K
6100-1105	81349	RCR20G101J
6100-2205	81349	RCR20G202J

Figure 6-8. The guard amplifier and trigger etched board (P / N 1617-2730).

NOTE: The number on the foil side is not the part number for the complete assembly. The dot on the foil at the transistor socket indicates the collector lead.

for $\mathbf{6 0 - H z}$ units.

GUARD AMP

Figure 6-9. Schematic diagram of the high-voltage supply, guard, trigger and generator circuits.

DETECTOR PRINTED CIRCUIT BOARD (60 HZ)

			DETECTOR			RINTED	CIRCUIT BOARD (60 HZ)			P/N 1617-2700			
	DES		DESCRIPTION						PART NO.	FMC	MFGR	PART	NUMBER
R	408	RES	COMP	30	K	OHM 5	5 PCT	1/2W	6100-3305	81349	RCR 2	G303J	
R	409	RES	COMP	3.0	K	OHM 5	5 PCT	1/2W	6100-2305	81349	RCR 2	G302J	
R	410	RES	COMP	470	OHM	5PCT	T $1 / 2$		6100-1475	81349	RCR2	G471J	
R	411	RES	COMP	10	K	5 PCT 1	1/2W		6100-3105	81349	RCR 2	G103J	
R	412	RES	COMP	470	गHM	5M 5 PCT	T 1/2		6100-1475	81349	RCR 2	G471J	
R	413	RFS	COMP	2.0	K	OHM 5	5 PCT	1/2W	6100-2205	81349	RCR 2	G202J	
R	414	RES	COMP	4.7	K	5 5CT 1	1/2W		6100-2475	81349	RCR2	G472J	
R	415	RES	COMP	10	K	5 PCT 1	1/2W		6100-3105	81349	RCR2	G103J	
R	416	RES	COMP	4.3	K	ОНM 5	5 PCT	1/2W	6100-2435	81349	RCR2	G432J	
R	417	RES	COMP	16	K	OHM 5	5PCT	1/2W	6100-3165	81349	RCR 2	G163J	
R	418	RES	COMP	10	K	5 PCT 1	1/2W		6100-3105	81349	RCR2	G103J	
R	419	QES	COMP	22	K	5 PCT 1	1/2W		6100-3225	81349	RCR 2	G223J	
R	420	RES	СомP	5.1	K	OHM 5	5 PCT	1/2W	6100-2515	81349	RCR2	G512J	
R	421	RES	COMP	100 K	K	$5 \mathrm{5CT} 1$	1/2W		6100-4105	81349	RCR2	G104J	
R	422	RES	FLM	66.5K		1 PCT	$1 / 8$		6250-2665	81349	RN5 5	6652 F	
R	423	RES	FLM	66.5 K		1 PCT	$1 / 8$		6250-2665	81349	RN5 5	6652 F	
R	424	RES	FLM	33.2 K		1 PCT	$1 / 8$		6250-2332	81349	RN55	3322 F	
R	425	RES	COMP	10	K	5 PCT 1	1/2W		6100-3105	81349	RCR 2	G103J	
R	426	RFS	COMP	10	K	5 PCT 1	1/2W		6100-3105	81349	RCR 2	G103J	
R	427	RES	COMP	160	K	OHM 5	5PCT	1/2W	6100-4165	81349	RCR2	G164J	
R	428	RES	COMP	100	K	5 PCT 1	1/2W		6100-4105	81349	RCR 2	G104J	
Q	429	RES	COMP	15	k	5 PCT 1	1/2W		6100-3155	81349	RCR 2	G153J	
Q	430	RES	COMP	1.0	K	5 PCT 1	1/2W		6100-2105	81349	RCR 2	G102J	
R	431	RFS	COMP	10	K	5 PCT 1	1/2W		6100-3105	81349	RCR 2	G103J	
R	432	RES	COMP	4.7	K	5 PCT 1	1/2W		6100-2475	81349	RCR2	G472J	
R	433	RES	COMP	100	K	5 PCT 1	1/2W		6100-4105	81349	RCR 2	G104J	
R	434	RES	COMP	3.9	K	5 PCT 1	1/2W		6100-2395	81349	RCR 2	G392J	
R	435	RES	COMP	1.0	K	5 PCT 1	1/2W		6100-2105	81349	RCR2	G102J	
R	436	RES	COMP	6.8	K	5 PCT 1	1/2W		6100-2685	81349	RCR 2	G682J	
R	437	RES	CDMP	10	K	5 5CT 1	1/2W		6100-3105	81349	RCR 2	G103J	
R	438	RES	COMD	10	K	5 PCT 1	1/2W		6100-3105	81349	RCR2	G103J	
R	439	RES	COMP	4.7	K	5 PCT 1	1/2W		6100-2475	81349	RCR 2	G472J	
R	440	RES	COMD	1.0	k	5 PCT 1	1/2W		6100-2105	81349	RCR 2	G102J	
R	441	RES	COMP	47	K	5 PCT 1	1/2W		6100-3475	81349	RCR 2	G473J	
R	442	RES	COMP	10	K	5 PCT 1	1/2W		6100-3105	81349	RCR 2	G103J	
R	443	POT	COMP	KNOB		50 K OHM	M 10 P	PCT LOG	6020-0600	01121	JAIN	66S50	

DETECTOR PRINTED CIRCUIT BOARD (50 HZ) P/N 1617-2770 COMPONENTS ARE IDENTICAL TO THE 1617-2700 COMPONENTS EXCEPT FOR THE FOLLOWING

	DES	DESCRIPTION						PART NO.	FMC	MFGR	PART		NUMBER
C	411	CAP	MYLAR	. 0243 UF	1	PCT	100V	4860-7833	56289	410 P	. 0243	UF	1 PCT
C	412	CAP	MYLAR	. 0243 UF	1	PCT	100 V	4860-7833	56289	410 P	. 0243	UF	1 PCT
C	413	CAP	MYLAR	. 0475 UF	1	PCT	100 V	4860-8204	56289	410 P	. 0475	UF	1 PCT

FOR MANUFACTURERS

From Defense Logistics Agency Microfiche
 H4-2 SB 708-42 GSA-FSS H4-2

Ref FMC Column

Sprague.,North Adams,MA 01247
Stimpson., Bayport, NY 11705
Manufacturer Stimpsun., Bavport, NY 11705
Superior Valve., Washington.PA Thomas \& Betts., Elizabeth,NJ 07207 Thomas \& Betts., Elizabeeth, OH 44117
TR Torrington., Torrington.CT 06790 Townsend., Braintree, MA 02184
Union Carbide.,New York, NY 1001 Union Carbide..New York, NY
United Carr Fast.,Boston,MA
Victoreen.,Cleveland,OH 44104 Ward Leenard..Mt.Verronon.NY 10550
Westinghouse. Bloomfield. NJ 07003 Westinghouse.,8loomfield.NJ
Weston.,Newark,NJ 07114 Acustnet Cap.New Bedford,MA 02742 Adarns \& Westlake. El khart. IN 46514 Chrysler.,Detroit,M1 48231
Atlantic India Rubber. Chicago, IL 60607
Amperite., Union City NJ 07087
Amperite.,Union City,NJ 07087
Ark-Les Switch. Watertown,MA 02172
Bead Chain.,Bridgeport,CT 06605
Bead Chain., Bridgeport.C
Belden., Chicago,IL 60644
Bronson., Beacon Falls,CT 06403
Cambridge Thermionic...Cambridge,MA 02138
Canfield.,
CTS.,Elkhart,IN 46514
Cannon.,Los Angeles,CA
Clare., Chicago, 1 L 60645
Centralab., Milwaukee, WI
Centralab., Milwaukee,WI 53212
Continental Carbon..New York,N
Coto Coil . Providence,RI O290
Coto Coil , Providence,R1 02905
Crescent Box.,Philadelphia,PA 19134
Chicago Min Lamp.,Chicago.IL 60640
Cinch. Chicago,IL 60624
Darnell.,Downey,CA 90241
Electromotive.,Willimantic,CT 06226
Continental Screw.,New Bedford,MA 02742
Nytronics.Berkeley Hts.NJ 07922
Dialight.,Brooklyn,NY 11237
Drake. Chicago, IL. 60631
Dzus Fastener., W. Islip,NY 1179
Eby.,Philadelphia, PA 19144

Elastic Stop Nut.,Uni
Erie., Erie.PA 16512
Amperex Elctrcs.,Hicksville, NY 1180
Amperex Elcetrcs., Hicksville, NY 110
Carling Elctrc..Hartford,CT O61 10
Carling Elctrc., Hartiord,CT
Elco Resistor,.New York,NY
Eico ,Attleboro, MA 02703
JFD Elcircs., Brooklyn, NY 11219
Groov.Pin..Ridgefield, NJ 07657
Heinemanna, Trenton, NJ 08602
Quam Nichois Chicago, IL 60637
Holo-Krome. Hartord, CT 06110
Holo-Krome...Aartiord, C
Hubbell.,Stratford, 06497
Industrial Cndnsr.,Chicago,IL 60618
Amphenol., Danbury,CT 06810
Johnson. Waseca, MN 56093
IRC(TRWW).,Burlington,1A 52601
Kurz-Kasch., Dayton OH 45401
Kurz-Kasch.,Day ton, OH 45401
Kuka., Mt Vernon NY 1055
Kuka.,Mt Vernon, NY 10551
Linden.,Providence,RI 02905
Linden..Providence, R1 102905
Littelfuse.,Des Plains, 1 LL 60016
Littelfuse., Des Plains, IL 60
Lord Mtg.Erie, PA 16512
Mallory Elctrc. Detroit,M1 48204
Maurey.,.Chicago,IL 60616
3 M Co.,St. Paul,MN 55101
Minor Rubber, Bloomfield NJ 07003
Minor Rubber, Bloomfield, N. 107003
Millen., Malden, MA 02148
Mueller Elctr.,Cleveland,OH 44
National Tube., Pittsburg, PA
Oak Inds.,Crystal Lake, IL 60014
Dot Fastener., Waterbury,CT 66720
Patton MacGuyyer., Providence, RI 02905
Patton MacGuver.,Providence, RI 02905
Pass Seymour. Syracuse NY 13209
Pass Seymour., SYracuse.NY 13209
Pierce Rober ts Rubber.,Trenton,NJ 08638
Pierce Rober ts Rubber., Trenton,
Platt Bros. Waterbury, CT O6720
Platt Bros.,Waterbury, CT 06720
Positive Lockwasher. Newark.N
Positive Lockwasher., Newark
AMF.,Princeton,IN 47570
Ray-o-Vac.,Madison,WI 5370
TRW.,Camden.NJ 08103
General Inst., Brooklyn, NY 11211
Shakeproof. Elgin IL 60120
Sigma Inst., Braintree,MA 02184
Airco Speer.,St Marys,PA 15867
Airco Speer.,St Marys.PA 1586
Stackpole..St Marys,PA 1586
Tinnerman., Cleveland,OH
Telephonics., Huntanginton, NY 11743
RCA., Harrison,NJ 07029
Waldes Kohinoor. New York, NY 11101
Western Rubber, Goshen, IN N 465
Wiremold.,Hartord CT 06110
Wiremold., Harttord,CT 06110
Continental Wirt., Philadelphia,PA 19101
Mallory Controls.,Frankfort,IN 46041
Mallory Controls., Frankfort.17
Zierick.,Mt Kisco,NY 10549
Zierick.,Mt Kisco,NY 10549
Tektronix., Beaverton, OR 97005
Prestole Fas iener.,Toledo,OH 43605
Prestole Fasiener., Toledo, OH
Vickers., St Louis. MO 63166
Lambda., Melville, NY 11746
Lambda. Melville, NY 11746
Spraque.,N.Adams, MA 01247
Spraque.,N.Adams,MA 01247
Motorola,Franklin Pk, IL 60131
Motorola.,Franklin Pk,IL 60131
Formica.,Cincinnati, OH 45232
Formica., Cincinnati,OH 45232
Standard Oil., Lafeyetre, IN 47902
Bourns Labs., Riverside, CA 92506
Sylvania., New York, NY 10017
Sylvania. New York, NY 10017
Air Filter. Milwaukee W1 53218
Air Filter.,Milwaukee, Wi 53218
Hammarlund, New Yoik NY 10010
Hammarlund, New Yoik, NY 10010
Beckman Inst,.Fulletton CA $¥ 2634$
TRW Ramsey . St L D Duis,MO 93166

McCoy Elctrns. Mt Hollv Sorinos PA 17065 Jones Mfg..Chicago,IL 60181 Walsco Elctrns., Los Angeles.CA 90018
Welwyn Intritl., Westlake,OH 44145
Schweber Elctrns., Westburg.NY 1159
AMP Inc., Harrisburg.PA 17105
Alden Products. Brockton. MA 02413
Allen Bradiey., Milwaukee, WI 53204
Litton Inds.,Beverly Hills,CA 90213
WW.,Law., Beverly Hills,CA
T1.,Dallas, TX 75222
GE., Waynesboro,VA 22980
Amerock, Rocktord,IL 61101
Cherry Elctrc.,Waukegan, IL 60085
Spectrol Elctrns.,City of Industry. CA 91745
Ferroxcube.,Saugerties, NY 12477
Fenwall Lab.,Morton Grove.IL 60053
Fenwall Lab., Morton Grove.IL
GE.,Schenectady, NY 12307
Amphenol., Broadview, IL 60153
RCA. Somerville, NJ, 08876
Fastex., Desplains, IL. 60016
Carter Ink.,Cambridge,MA 021
GE.,Syracuse, NY 13201
Vanguard Elctrns. Inglewood,CA
Grayburne., Yonkers, NY 10701
KDI Pyrofilm Whipakefield,MA 01880
KDI Pyrofilm, Whipany, NJ, 07981
Clairex.,New York, NY 10001
Clairex.,New York, NY 10001
Arrow Hart. Hartford, CT 06106
Digitrunics. Albertson NY 1150
Digitronics..Albert'ton, NY 1150
Motorola.,Phoenix, AZ 85008
Component Mfg., W. Bridgewater, MA 02379
Tansistor Elctrns., Bennington, VT 05201
Tansistor Elctrns., Benningto
Corcom.,Chicago,IL 60639
ITT Elctrns.,Pomona, CA 91766
Controls Co.of Amer. Melrose Pk,1L 60160
Viking Inds. Chatsworth.CA 91311
Viking Inds, Chatsworth, CA 91311
Barber Colman..Rockford,IL 6110
Barnes Mig...Mansfield OH 44901
Barnes Migg. Mansfield OH 44901
Wakefield Eng., Wakefield, MA
Panduit., Tinley Pk, IL 60477
Truelove \& Maclean...Waterbury. CT 06708
Precision Monolith.,Santa Clara, CA 95050
Clevite. Cleveland, OH 44110
WLS Stamp., Cleveland, OH 4410
Richco Pistc..Chicago,IL 60646
Teledyne Kntcs, Soland Bch,CA 92075
Teledyne Kntos, Soland Bch,CA 9207
Aladdin Elctrns.,Nashville, TN 37210
Aladdin Elctrns.,Nashville, TN 37210
Ross Milton.,Southampton,PA 18966
Digitran. Pasadena,CA 91105
Eagle Signal. Baraboo.W1 53913
Cinch Graphik., City of Industry, CA 91744
Avnet., Culver City. CA 90230
Fairchild., Mountain View,CA
Fairchild. Mountain View,CA 9404
Birtcher. N.Los Angetes,CA 90032
Amer.Semicond..Arlington Hts,IL 60004
Magnetic Core. Newburgh, NY 12550
USM Fasterner., Shelton.CT 06484
Bodine., Bridgeport,CT 06605
Bodine Elctrc. Chicago, IL 60618
Cont Device.,Hawthorne,CA 9025
Borg Inst.,Delavan,WI 53115
Deutsch Fastener., Los Angeles, CA 90045
Bell Elctra., Chicago, IL 60632
Vemaline Prod., Franklin Lakes,NJ 07417
GE., Buffalo, NY 14220
C\&K Components. Watertown,MA 02172
Star-Tronics., Georegetown.MA 01830
Burgess Battery.,Freeport, IL 61032
Burgess Battery,.,Freeport,IL 61032
Fenwal Elctrns.,Framingham,MA 0170
Burndy..Norwalk,CT 06852
Glasseal Prod.,Linden,NJ 07036
Chicago Switch..Chicago, IL 60647
TS of Berne., Berne. IN 46711
Chandler Evans.,W. Hartford, CT 06101
Nortronics. Minneapolis.MN 55427
Nortronics.Minneapolis.MN 55427
National.,Santa Clara,CA 95051
Elctrc Transistors., Flushing.NY 11354
ictre Transistors. Flushing. NY 11354
eledyne., Mountain View,CA 94043
Hamlin., Lake Millis,WI 53551
RCA.,Woodbridge,NJ 07095
Clarostat., Dover, NH 03820
Micrometals. City of Industry, CA 91744
Dickson Elctrns. Scoutsdale. AZ 85252
Dickson Elctrns.,Scoutsdale, AZ, 852
Unitrode., Watertown,MA 02172
Eliectrocraft.,Hopkins,MN 55343
Thermalloy..Oallas. TX 75234
Thermalloy...Dallas, TX 75234
Vogue Inst.,Richmond Hill,NY 11418
ernitron., Laconia,NH 03246
11418
Solitron Devices., Tappan, NY 10983
Fairchild.,San Rafael,CA 94903
Burr Brown., Tucson,AZ 85706
Anadex Inst, Van Nuys,CA 91406
Elctrc Controls., Wilton,CT 06897
American Labs.,Fullerton,CA 92634
Relton., Arcadia,CA 91006
Watkins \& Palm Beach, FL 33402
Watkins \& Johnson.,Palo
Corbin..Berlin.CT 06037
Corbin. Berlin.CT. O6037.
Cornell Dubilier.,Newak, NJ 0710
Corning Glass.,Corning, NY 14830
Acopian.,Easton,PA 18042
Electrocube ,San Gabriel,CA 91776
R\&G Sloan. Sun Valley, CA 91352
R\&G Sloan, Sun Valley,CA 91352
Elctrc Inst \& Spclty. Stoneham,MA 02180
General Inst, Hicksville, 11802
General Inst., Hicksville,NY 11802
ITT,. Lawrence, MA 08142
Digital Equip.,Maynard,MA 01754

JANUARY 1978

Figure 6-10. The detector etched board, ($\mathrm{P} / \mathrm{N} 1617-2770$) for $50-\mathrm{Hz}$ units or $\mathrm{P} / \mathrm{N} 1617-2700$ (for $\mathbf{6 0} \mathrm{Hz}$ units).

NOTE: The number on the foil side is not the part number for the complete assembly. The dot on the foil at the transistor socket indicates the collector lead.

Figure 6-11. Schematic diagram for the detector circuit.

FIG	ONT	DESCRIPTION	GR DART NO	FMC	MFGR PART NO
1	1	HANJLF $A N D$ GRACKFT $\triangle S M$	1617-2)10	24655	1617-2010
2	1	KNOB $\triangle S M$ D DIAL INRLUDES	5520-5520	24655	5520-5520
2	1	RFTAIVER	5220-5401	24655	5220-5401
3	1	DIAL ASM D DIAL (115V 6OHZ)	1617-1250	24655	1617-1250
3	1	DIAL ASM O DIAL (230V 50HZ)	1617-1260	24655	1617-1260
4	1	KNOR ASM GEN LFVEL MAX VOLTS INClUDES	5500-5321	24655	5500-5321
4	1	RFTAINER	5220-5432	24655	5220-5402
5	1	INOICATOR O DIAL	5460-1303	24655	5460-1303
6	1	CABINET ASM (115V 60HZ)	1617-2001	24655	1617-2001
6	1	CABIVET ASM (23OV 5OHZ)	1617-2.002	24655	1617-2002
7	1	GASKET	5168-1470	24655	5168-1470
8	1	DIAL $\triangle S M$ METER (115V-60HZ)	1617-2170	24655	1617-2170
9	1	DIAL ASM METFP (230V-50HZ)	1617-2190	24655	1617-2190
9	1	KNOB $\triangle S M$ METED INCLIJDFS	5500-5420	24655	5500-5420
9	1	RFTATVER	5220-5401	24655	5220-5401
10	1	DIAL ASM BIAS VOLTAGE. Range	1617-2130	24655	1617-2130
11	1	KNJR ASM BIAS VDL'AGE RANGF INCLUDES	5520-5320	24655	5520-5320
11	1	PETAINER	5220-5402	24655	5220-5402
12	1	OIAL ASM LFAK CURRENT RANGE	1617-2140	24655	1617-2140
13	1	KNOR $\triangle S M$ LEAK GURRENT RANGE includes	5520-5320	24655	5520-5320
13	1	RETAIVER	5220-5402	24655	5220-5402
14	1	$\begin{gathered} \text { KNOP } \triangle S M \text { FXTFRNAL BIAS } \\ \text { INCLUDES } \end{gathered}$	5520-5321	24655	5520-5321
14	1	QETAINER	5220-5402	24655	5220-5402
15	1	$\begin{gathered} \text { KVOR ASM MULTIPLIER } \\ \text { INCLUDES } \end{gathered}$	5500-5420	24655	5500-5420
15	1	RFTAIVER	5220-5401	24655	5220-5401
16	1	DIAL ASM MULTIPLIER	1617-2150	24655	1617-2150
17	1	$\begin{aligned} & \text { KNOS ASM DETECTOR SENSITIVITY } \\ & \text { INCLUDES } \end{aligned}$	5320-5321	24655	5520-5321
17	1	RFTAINER	5220-5402	24655	5220-5402
18	1	INIICATJR C OIAL	5460-1303	24655	5460-1303
10	1	DIAL ASM C DIAL	1617-1270	24655	1617-1270
20	1	$\begin{aligned} & \text { KNOB ASM C DIAL } \\ & \text { INCLUDES } \end{aligned}$	5520-5520	24655	5520-5520
20	1	RFTAINER	5220-5401	24655	5220-5401
21	1	GASKET	5168-0796	24655	5168-0796
22	4	FEET	5260-0900	24655	5260-0900
23	2	PILJT LIGHT CAP	5620-0500	72765	25P UNFLUTED
24	1	COVER	4170-2086	24655	4170-2086
25	1	HOLDER, LAMD MARKED	5600-1023	24655	5600-1023

Rotary switch sections are shown as viewed from the panel end of the shaft. The first digit of the contact number refers to the section. The section nearest the panel is 1 , the next section back is 2, etc. The next two digits refer to the contact. Contact 01 is the first position clockwise from a strut screw (usually the screw above the locating key), and the other contacts are numbered sequentially ($02,03,04$, etc), proceeding clockwise around the section. A suffix F or R indicates that the contact is on the front or rear of the section, respectively.

Figure 6-12. Switch diagram for Type 1617 front panel controls.

ELECTRICAL PARTS LIST

"AIV FPAMF \& SWITCH ASSEMBLIES


```
MAIV FRAME & SWITCH ASSEMRIIES
F5O1 & F502 (5330-0600) FOR l15V OPFRATION
F5O1 & F502 (533)-04JO) FOR 230V OPERATIUN
```

	ローs	1）FSCRIDTION				PART NiJ．	FMG	MFGR	PART	NUMRFR
c	131	CADACITTR	P 1 SM	0.5 UF 1	1／40CT 8JOV	0236－4050	2＇6055	0230	－4050	
C	$1) 7$	CAD ALJM	2000－	－2500－250	00 ： FF 6V	4450－5608	50289	Son	6 V	
c	1.33	CAP $\triangle L I W$	$1500-$	－750－750	UF 25 V	4450－0700	56289	600	25 V	
C	1） 4	CAP ALUY	60）－3	300－310	UF 75 V	4450－5606	56289	600	75 V	
C	135	CAP ALJM	300－1	15？－150 U	UF 150 V	4450－5602	56289	600	15 JV	
C	136	CAF ALIIM	5）－25	5－25 UF 4	450 V	4450－0800	56289	SOD	450 V	
C	1）7	CAD \triangle LIM	50－25	5－25 JF 45	450 V	4450－0800	56289	600	450 V	
c	133	CAP $\triangle L U M$	50－25	5－25 UF 4	450 V	4450－0800	56289	600	450 V	
C	109	CAP MYLAR	－－luF	F 10 PCT	100 V	4860－8250	56289	410 P	0.1 UF	$1 J P C T$
C	110	CAD CEF	nisc 1	1000 PF 10	OPCT 5UCV	4405－2108	72932	0801	08225F0	102 K
0	131	RECT $1 N 41$	14010	0001 V 3 A	SI $\triangle 1 X M$	6081－1014	14433	1 N 41	140	
CR	$1) 2$	HFCT 1N41	1401.	Jopiv 3A	SI $\triangle 1 \times 4$	6081－1014	14433	1 N 41	40	
C？	1）3	OIODF REC	CTIFTE	EP 1N40C3		6081－1001	14433	1 N 40	003	
C^{2}	1） 4	DIODF PFC	CTIFIE	EF 1014003		6081－10）1	14433	1 N 4 O	003	
C． 2	135	UIDDF REC	CTIFIF	FR 1N4003		6081－1001	14433	1 N 40	003	
F	5） 1	FIJSF SLO－	－8L）	2／13A	250 V	5330－0600	75915	313	.200	
F	501	FIJSE SLIO－	－RLON	1／104	250 V	5330－0400	75915	313	． 100	
F	5）2	FUSE SL？	－RLOW	2／10A	250 V	5330－0600	75915	313	． 200	
F	532	FUSE CLT－	－8LO4	1／104	250 V	5330－3400	75915	313	． 100	
J	101	BINJING	OOST A	ASM		0938－4252	24655	0938	－4252	
J	132	3INDING P	POST 4	CSM		0938－4252	24655	0938	$8-4252$	
J	$1) 3$	BINIING P	POST A	$\triangle S M$		0938－3000	24655	0938	－3000	
J	134	BINDING P	POST A	$\triangle S M$		－9938－3000	24655	0938	－3000	
J	135	BINDING	ons＊\triangle	$\triangle S M$		0938－3002	24655	0938	8－3002	
J	1 Jó	GINDING P	POST A	ASM		0938－3003	24655	0938	8－3003	
J	137	GINDING P	POST 4	ASM		0938－3000	24655	0938	8－30J0	
J	137	BINDING P	POST 4	$\triangle S M$		0938－3002	24655	$\bigcirc 938$	8－3002	
J	137	QINIING D	DOST ${ }^{\text {P }}$	$\triangle S M$		0938－3000	24655	0938	8－3000	
M	121	MTTER				5730－1333	24555	5730	－1383	
ρ	121	LAMP FLAA	NIGE BA	1SF GV C．	． 241000 H	5600－0300	71744	CM－3	328	
－	132	LAMP QAYON	YONF T 3	3ASE 2V．	． 064	5600－0800	24455	49		
P	1.33	LAMP RAYO	YONET B	R $\triangle S E 3.3 \mathrm{~V}$		5500－0700	71744	44		
PL	5）1	CJOD 3WR	10 A 1	120V us b	b．5FTHAMMER	4200－1903	24655	4200	－1903	
F	131	POTENTITM	METFR	22．6－23．	． 4 K	0433－4130	24655	0433	3－4130	
F	172	PITENTI	METF₹	$27 \mathrm{~K} 2 P \mathrm{C}$		0977－4100	24055	0977	－4100	
R	133	RFSISTOD	ASM．	． 21 Ohir 0	0.25 PCT	1617－1196	24655	1617	7－1190	
R	134	RESISTT？	\triangle SM 3	3.1 万HM	0.25 FC T	1617－1180	24655	1617	－1180	
R	$1 J 5$	R F S ISTANC	CE IJNI	IT 1 JHM		0500－0300	24655	0500	－0300	
R	136	RFS FLY 1	10 OH：M	$41 / 4$	PCT $1 / 2 \mathrm{~W}$	6452－9100	81349	RN65	5DIOROC	
R．	$1) 7$	RES FLM 1	1000 HM	$41 / 1 \mathrm{UPC}$	T 50pPM1／2W	6188－19100	81349	－N7	OC1000B	
R	138	RES FLM	1 K	$1 / 100 \mathrm{CT}$	T 50PPM1／2N	6188－1100	81349	KN7	0C1001B	
R	109	hFS FLM	10 K	$1 / 1 . \mathrm{PCT}$	T 5JPPMI／2W	6198－2100	81349	RN7	OC10028	
R	110	RES FLM	$100<$	$1 / 10 \mathrm{OCT}$	T $50 P D M 1 / 2 \mathrm{~W}$	6188－3100	81349	KN70	OC 1003 B	
P	111	RFS FLM	1 M	$1 / 10 \mathrm{PCT}$	T 5OPPM1／2W	6188－4100	81349	RN70	OC 1004 C	
R	112	RES FLM	134	1／4PCT 5	50PPM 2W	6195－5100	81349	RNBOC	C1005C	

ANCHOR TERMINALS USED: A.T. $101-105$

Figure 6-13. Overall schematic diagram for the

APPENDIX

This capacitor is a versatile tool for calibration laboratories and production-line testing. With it a bridge can be standardized to an accuracy exceeded only by that of the highest quality, individually certified laboratory stand. ards

Any value of capacitance from 100 pF to $1.111 \mu \mathrm{~F}$, in steps of 100 pF , can be set on the four decades and will be known to an accuracy of 0.05%.

STANDARD CAPACITOR

Type 1409

Catalog Vumber	Type	Nominal Capaci- tance $\mu \mathrm{F}$	Frequency Limit for Max Volts
$1409-9706$	$1409-\mathrm{F}$	0.001	4.7 MHz
$1409-9707$	$1409-\mathrm{G}$	0.002	2.7 MHz
$1409-9711$	$1409-\mathrm{K}$	0.005	1.3 MHz
$1409-9712$	$1409-\mathrm{L}$	0.01	750 kHz
$1409-9713$	$1409-\mathrm{M}$	0.02	430 kHz
$1409-9718$	$1409-\mathrm{R}$	0.05	210 kHz
$1409-9720$	$1409-\mathrm{T}$	0.1	120 kHz
$14099-9721$	$1409-\mathrm{U}$	0.2	70 kHz
$1409-9724$	$1409-X$	0.5	35 kHz
$1409-9725$	$1409-\mathrm{Y}$	-1.0	17 kHz

The 1409 Standard Capacitors are fixed mica capacitors of very high stability for use as two- or three-terminal reference or working standards in the laboratory.

DECADE

RESISTOR

Type 1433

- $\pm 0.02 \%$ accuracy
- good frequency characteristics
- low temperature coefficient
- excellent stability
- low zero resistance

The 1433 Decade Resistors are primarily intended for precision measurement applications where their excellent accuracy, stability, and low zero resistance are important. They are convenient resistance standards for checking the accuracy of resistance-measuring devices and are used as components in dc and audio-frequency impedance bridges.

TEST JIG

Type 1650-P1

This test-jig adaptor is used to connect components quickly to a pair of terminals and can be placed on the bench directly in front of the operator.

The test jig makes a three-terminal connection to the bridge, so that the residual zero capacitance is negligible.

The lead resistance (0.08 ohm total) has effect only when very low impedances are measured, and the lead capacitance affects only the measurement of the Q of inductors, introducing a small error in $D\left(\right.$ or $\left.\frac{1}{Q}\right)$ of less than 0.007 .

Catalog Number	Description
$1650-9601$	$\mathbf{1 6 5 0}$-P1 Test Jig

[^0]: General Radio Experimenter reference, Vol. 40, No. 6, June 1966.

[^1]: *The notation C (cycles per second) is equivalent to Hz (hertz).

[^2]: *With oscillators which have one side of the output tied to the case, do not use the third wire of the power cord, so as not to ground the case.

[^3]: 1R.D. Cutkosky, "Four Terminal Pair Networks as Precision Pair Networks, ", IEEE Transactions on Communication and Electronics, \#70, January 1962, page 19.

[^4]: *The anchor terminals (AT) are the most accessible test points, they are on one side of the etched boards (see Figures 6-7 through 6-9). The AT is usually omitted on the board All anchor terminals with the same first digit (4 in AT401) are on the same board.

[^5]: *Actually any combination of C and R can be used. $D=$ $\omega R C$ has to check with the D setting (within specifications).

